4,060 research outputs found

    Probing Solar Convection

    Get PDF
    In the solar convection zone acoustic waves are scattered by turbulent sound speed fluctuations. In this paper the scattering of waves by convective cells is treated using Rytov's technique. Particular care is taken to include diffraction effects which are important especially for high-degree modes that are confined to the surface layers of the Sun. The scattering leads to damping of the waves and causes a phase shift. Damping manifests itself in the width of the spectral peak of p-mode eigenfrequencies. The contribution of scattering to the line widths is estimated and the sensitivity of the results on the assumed spectrum of the turbulence is studied. Finally the theoretical predictions are compared with recently measured line widths of high-degree modes.Comment: 26 pages, 7 figures, accepted by MNRA

    Stellar Envelope Convection calibrated by Radiation Hydrodynamics Simulations: Influence on Globular Clusters Isochrones

    Get PDF
    One of the largest sources of uncertainty in the computation of globular cluster isochrones and hence in the age determination of globular clusters is the lack of a rigorous description of convection. Therefore, we calibrated the superadiabatic temperature gradient in the envelope of metal-poor low-mass stars according to the results from a new grid of 2D hydrodynamical models, which cover the Main Sequence and the lower Red Giant Branch of globular cluster stars. In practice, we still use for computing the evolutionary stellar models the traditional mixing length formalism, but we fix the mixing length parameter in order to reproduce the run of the entropy of the deeper adiabatic region of the stellar envelopes with effective temperature and gravity as obtained from the hydro-models. The detailed behaviour of the calibrated mixing length depends in a non-trivial way on the effective temperature, gravity and metallicity of the star. Nevertheless, the resulting isochrones for the relevant age range of galactic globular clusters have only small differences with respect to isochrones computed adopting a constant solar calibrated value of the mixing length. Accordingly, the age of globular clusters is reduced by 0.2 Gyr at most.Comment: 9 pages, 3 figures Accepted for publication in ApJ Letter

    Economic benefits of Mt. Cook National Park

    Get PDF
    Market and non-market valued decisions are associated with New Zealand's system of national parks. The use benefits of Mount Cook National Park are not priced by the market mechanism, whereas many of the inputs necessary to operate and maintain the Park are priced. Estimates of the economic benefits are relevant information when deciding upon the allocation of resources to, and within, a system of national parks. In 1984, the consumers' surplus for adult New Zealand visitors was about 2.2million.AnestimateofthenetnationalbenefitsisgivenbytheconsumerssurplusobtainedbyNewZealandvisitors,plusthenetbenefitsassociatedwithforeignvisitors,lessthecostofParkmanagementandlandrental.ThenetbenefitofMountCookNationalPark,asitwasin1984,islikelytobepositive,indicatingthatthebenefitsassociatedwiththecurrentusepatternofresourcesexceedstheiropportunitycosttothenation.However,thisresultcannotbeusedtoestablishtheoptimalityofcurrentexpenditureandmanagement.Approximately170,000adultsvisitedMountCookNationalParkover1984;292.2 million. An estimate of the net national benefits is given by the consumers' surplus obtained by New Zealand visitors, plus the net benefits associated with foreign visitors, less the cost of Park management and land rental. The net benefit of Mount Cook National Park, as it was in 1984, is likely to be positive, indicating that the benefits associated with the current use pattern of resources exceeds their opportunity cost to the nation. However, this result cannot be used to establish the optimality of current expenditure and management. Approximately 170,000 adults visited Mount Cook National Park over 1984; 29% were from New Zealand, 25% were from Australia, 18% were from the United States, and 7% were from Japan. Visitors to the Park spend money in towns and villages in the Mackenzie Basin area. Average adult visitor expenditure in the Mackenzie Basin area is 58. These expenditures give rise to secondary economic benefits and create opportunities for regional development. Visitor expenditures in the Mackenzie Basin area are associated with 13.4millionofadditionalregionaloutput,13.4 million of additional regional output, 6.8 million of additional regional income, and 196 jobs. These effects derive their significance from regional objectives; they are not indicators of the national benefits associated with Mount Cook National Park

    Rotation profiles of solar-like stars with magnetic fields

    Full text link
    The aim of this work is to investigate rotation profile of solar-like stars with magnetic fields. A diffusion coefficient of magnetic angular momentum transport is deduced. Rotating stellar models with different mass are computed under the effect of the coefficient. Then rotation profiles are obtained from the theoretical stellar models. The total angular momentum of solar model with only hydrodynamic instabilities is about 13 times larger than that of the Sun at the age of the Sun, and this model can not reproduce quasi-solid rotation in the radiative region. However, not only can the solar model with magnetic fields reproduce an almost uniform rotation in the radiative region, but its total angular momentum is consistent with helioseismic result at the level of 3 σ\sigma at the age of the Sun. The rotation of solar-like stars with magnetic fields is almost uniform in the radiative region. But there is an obvious transition region of angular velocity between the convective core and the radiative region of models with 1.2 - 1.5 MM_{\odot}, where angular velocity has a sharp radial change, which is different from the rotation profile of the Sun and massive stars with magnetic fields. Moreover the changes of the angular velocity in the transition region increase with the increasing in the age and mass.Comment: Accepted for publication in ChjA

    Prospects for asteroseismology

    Full text link
    The observational basis for asteroseismology is being dramatically strengthened, through more than two years of data from the CoRoT satellite, the flood of data coming from the Kepler mission and, in the slightly longer term, from dedicated ground-based facilities. Our ability to utilize these data depends on further development of techniques for basic data analysis, as well as on an improved understanding of the relation between the observed frequencies and the underlying properties of the stars. Also, stellar modelling must be further developed, to match the increasing diagnostic potential of the data. Here we discuss some aspects of data interpretation and modelling, focussing on the important case of stars with solar-like oscillations.Comment: Proc. HELAS Workshop on 'Synergies between solar and stellar modelling', eds M. Marconi, D. Cardini & M. P. Di Mauro, Astrophys. Space Sci., in the press Revision: correcting abscissa labels on Figs 1 and

    N-Photon wave packets interacting with an arbitrary quantum system

    Full text link
    We present a theoretical framework that describes a wave packet of light prepared in a state of definite photon number interacting with an arbitrary quantum system (e.g. a quantum harmonic oscillator or a multi-level atom). Within this framework we derive master equations for the system as well as for output field quantities such as quadratures and photon flux. These results are then generalized to wave packets with arbitrary spectral distribution functions. Finally, we obtain master equations and output field quantities for systems interacting with wave packets in multiple spatial and/or polarization modes.Comment: 20 pages, 8 figures. Published versio

    Characterisation of the Mopra Radio Telescope at 16--50 GHz

    Full text link
    We present the results of a programme of scanning and mapping observations of astronomical masers and Jupiter designed to characterise the performance of the Mopra Radio Telescope at frequencies between 16-50 GHz using the 12-mm and 7-mm receivers. We use these observations to determine the telescope beam size, beam shape and overall telescope beam efficiency as a function of frequency. We find that the beam size is well fit by λ\lambda/DD over the frequency range with a correlation coefficient of ~90%. We determine the telescope main beam efficiencies are between ~48-64% for the 12-mm receiver and reasonably flat at ~50% for the 7-mm receiver. Beam maps of strong H2_2O (22 GHz) and SiO masers (43 GHz) provide a means to examine the radial beam pattern of the telescope. At both frequencies the radial beam pattern reveals the presence of three components, a central `core', which is well fit by a Gaussian and constitutes the telescopes main beam, and inner and outer error beams. At both frequencies the inner and outer error beams extend out to approximately 2 and 3.4 times the full-width half maximum of the main beam respectively. Sources with angular sizes a factor of two or more larger than the telescope main beam will couple to the main and error beams, and therefore the power contributed by the error beams needs to be considered. From measurements of the radial beam power pattern we estimate the amount of power contained in the inner and outer error beams is of order one-fifth at 22 GHz rising slightly to one-third at 43 GHz.Comment: Accepted for publication in PAS

    Light Quark Masses with Dynamical Wilson Fermions

    Get PDF
    We determine the masses of the light and the strange quarks in the MSˉ\bar{MS}-scheme using our high-statistics lattice simulation of QCD with dynamical Wilson fermions. For the light quark mass we find mMSˉlight(2GeV)=2.7(2)MeVm^{light}_{\bar{MS}}(2 GeV) = 2.7(2) MeV, which is lower than in quenched simulations. For the strange quark, in a sea of two dynamical light quarks, we obtain mMSˉstrange(2GeV)=140(20)MeVm^{strange}_{\bar{MS}}(2 GeV) = 140(20) MeV.Comment: 10 pages (latex file, uses epsf-style

    Stellar turbulence and mode physics

    Full text link
    An overview of selected topical problems on modelling oscillation properties in solar-like stars is presented. High-quality oscillation data from both space-borne intensity observations and ground-based spectroscopic measurements provide first tests of the still-ill-understood, superficial layers in distant stars. Emphasis will be given to modelling the pulsation dynamics of the stellar surface layers, the stochastic excitation processes and the associated dynamics of the turbulent fluxes of heat and momentum.Comment: Proc. HELAS Workshop on 'Synergies between solar and stellar modelling', eds M. Marconi, D. Cardini, M. P. Di Mauro, Astrophys. Space Sci., in the pres
    corecore