15 research outputs found

    Genomic signatures of local adaptation reveal source-sink dynamics in a high gene flow fish species

    Get PDF
    Understanding source-sink dynamics is important for conservation management, particularly when climatic events alter species' distributions. Following a 2011 'marine heatwave' in Western Australia, we observed high recruitment of the endemic fisheries target species Choerodon rubescens, towards the cooler (southern) end of its distribution. Here, we use a genome wide set of 14 559 single-nucleotide polymorphisms (SNPs) to identify the likely source population for this recruitment event. Most loci (76%) showed low genetic divergence across the species' range, indicating high levels of gene flow and confirming previous findings using neutral microsatellite markers. However, a small proportion of loci showed strong patterns of differentiation and exhibited patterns of population structure consistent with local adaptation. Clustering analyses based on these outlier loci indicated that recruits at the southern end of C. rubescens' range originated 400 km to the north, at the centre of the species' range, where average temperatures are up to 3 °C warmer. Survival of these recruits may be low because they carry alleles adapted to an environment different to the one they now reside in, but their survival is key to establishing locally adapted populations at and beyond the range edge as water temperatures increase with climate change

    Multilocus Bayesian Estimates of Intra-Oceanic Genetic Differentiation, Connectivity, and Admixture in Atlantic Swordfish (Xiphias gladius L.)

    Get PDF
    Versión del editor

    Outlier SNPs detect weak regional structure against a background of genetic homogeneity in the Eastern Rock Lobster, Sagmariasus verreauxi

    Get PDF
    Genetic differentiation is characteristically weak in marine species making assessments of population connectivity and structure difficult. However, the advent of genomic methods has increased genetic resolution, enabling studies to detect weak, but significant population differentiation within marine species. With an increasing number of studies employing high resolution genome-wide techniques, we are realising that the connectivity of marine populations is often complex and quantifying this complexity can provide an understanding of the processes shaping marine species genetic structure and to inform long-term, sustainable management strategies. This study aims to assess the genetic structure, connectivity, and local adaptation of the Eastern Rock Lobster (Sagmariasus verreauxi), which has a maximum pelagic larval duration of 12 months and inhabits both subtropical and temperate environments. We used 645 neutral and 15 outlier SNPs to genotype lobsters collected from the only two known breeding populations and a third episodic population—encompassing S. verreauxi's known range. Through examination of the neutral SNP panel, we detected genetic homogeneity across the three regions, which extended across the Tasman Sea encompassing both Australian and New Zealand populations. We discuss differences in neutral genetic signature of S. verreauxi and a closely related, co-distributed rock lobster, Jasus edwardsii, determining a regional pattern of genetic disparity between the species, which have largely similar life histories. Examination of the outlier SNP panel detected weak genetic differentiation between the three regions. Outlier SNPs showed promise in assigning individuals to their sampling origin and may prove useful as a management tool for species exhibiting genetic homogeneity

    Novel Tools for Conservation Genomics: Comparing Two High-Throughput Approaches for SNP Discovery in the Transcriptome of the European Hake

    Get PDF
    The growing accessibility to genomic resources using next-generation sequencing (NGS) technologies has revolutionized the application of molecular genetic tools to ecology and evolutionary studies in non-model organisms. Here we present the case study of the European hake (Merluccius merluccius), one of the most important demersal resources of European fisheries. Two sequencing platforms, the Roche 454 FLX (454) and the Illumina Genome Analyzer (GAII), were used for Single Nucleotide Polymorphisms (SNPs) discovery in the hake muscle transcriptome. De novo transcriptome assembly into unique contigs, annotation, and in silico SNP detection were carried out in parallel for 454 and GAII sequence data. High-throughput genotyping using the Illumina GoldenGate assay was performed for validating 1,536 putative SNPs. Validation results were analysed to compare the performances of 454 and GAII methods and to evaluate the role of several variables (e.g. sequencing depth, intron-exon structure, sequence quality and annotation). Despite well-known differences in sequence length and throughput, the two approaches showed similar assay conversion rates (approximately 43%) and percentages of polymorphic loci (67.5% and 63.3% for GAII and 454, respectively). Both NGS platforms therefore demonstrated to be suitable for large scale identification of SNPs in transcribed regions of non-model species, although the lack of a reference genome profoundly affects the genotyping success rate. The overall efficiency, however, can be improved using strict quality and filtering criteria for SNP selection (sequence quality, intron-exon structure, target region score)

    Exonic Versus Intronic Snps: Contrasting Roles In Revealing The Population Genetic Differentiation Of A Widespread Bird Species

    No full text
    Recent years have seen considerable progress in applying single nucleotide polymorphisms (SNPs) to population genetics studies. However, relatively few have attempted to use them to study the genetic differentiation of wild bird populations and none have examined possible differences of exonic and intronic SNPs in these studies. Here, using 144 SNPs, we examined population genetic differentiation in the saker falcon (Falco cherrug) across Eurasia. The position of each SNP was verified using the recently sequenced saker genome with 108 SNPs positioned within the introns of 10 fragments and 36 SNPs in the exons of six genes, comprising MHC, MC1R and four others. In contrast to intronic SNPs, both Bayesian clustering and principal component analyses using exonic SNPs consistently revealed two genetic clusters, within which the least admixed individuals were found in Europe/central Asia and Qinghai (China), respectively. Pairwise D analysis for exonic SNPs showed that the two populations were significantly differentiated and between the two clusters the frequencies of five SNP markers were inferred to be influenced by selection. Central Eurasian populations clustered in as intermediate between the two main groups, consistent with their geographic position. But the westernmost populations of central Europe showed evidence of demographic isolation. Our work highlights the importance of functional exonic SNPs for studying population genetic pattern in a widespread avian species.Wo

    Toward a genome-wide approach for detecting hybrids:Informative SNPs to detect introgression between domestic cats and European wildcats (Felis silvestris)

    No full text
    Endemic gene pools have been severely endangered by human-mediated hybridization, which is posing new challenges in the conservation of several vertebrate species. The endangered European wildcat is an example of this problem, as several natural populations are suffering introgression of genes from the domestic cat. The implementation of molecular methods for detecting hybridization is crucial for supporting appropriate conservation programs on the wildcat. In this study, genetic variation at 158 single-nucleotide polymorphisms (SNPs) was analyzed in 139 domestic cats, 130 putative European wildcats and 5 captive-bred hybrids (N=274). These SNPs were variable both in wild (H(E)=0.107) and domestic cats (H(E)=0.340). Although we did not find any SNP that was private in any population, 22 SNPs were monomorphic in wildcats and pairwise F(CT) values revealed marked differences between domestic and wildcats, with the most divergent 35 loci providing an average F(CT)>0.74. The power of all the loci to accurately identify admixture events and discriminate the different hybrid categories was evaluated. Results from simulated and real genotypes show that the 158 SNPs provide successful estimates of admixture, with 100% hybrid individuals (two to three generations in the past) being correctly identified in STRUCTURE and over 92% using the NEWHYBRIDS' algorithm. None of the unclassified cats were wrongly allocated to another hybrid class. Thirty-five SNPs, showing the highest F(CT) values, provided the most parsimonious panel for robust inferences of parental and first generations of admixed ancestries. This approach may be used to further reconstruct the evolution of wildcat populations and, hopefully, to develop sound conservation guidelines for its legal protection in Europe
    corecore