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Abstract

Background: Cultivated soybean (Glycine max) experienced a severe genetic bottleneck during its domestication
and a further loss in diversity during its subsequent selection. Here, a panel of 65 wild (G. soja) and 353 cultivated
accessions was genotyped at 552 single-nucleotide polymorphism loci to search for signals of selection during and
after domestication.

Results: The wild and cultivated populations were well differentiated from one another. Application of the Fst
outlier test revealed 64 loci showing evidence for selection. Of these, 35 related to selection during domestication,
while the other 29 likely gradually became monomorphic as a result of prolonged selection during post
domestication. Two of the SNP locus outliers were associated with testa color.

Conclusions: Identifying genes controlling domestication-related traits is important for maintaining the diversity of
crops. SNP locus outliers detected by a combined forward genetics and population genetics approach can provide
markers with utility for the conservation of wild accessions and for trait improvement in the cultivated genepool.
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Background
The domestication of plants has been a key driver of the
development of human civilization [1,2]. The necessary
changes to plant phenotype and physiology have been
brought about by a process of selection at key so-called
“domestication” genes [1]. Both top-down and bottom-
up approaches have been taken to identify the genomic
regions most clearly affected by domestication and selec-
tion [3]. The former aims to isolate the genes or quanti-
tative trait loci (QTL) responsible for a given phenotype,
and has been successful in identifying a number of major
effect genes in rice [4-9], maize [10,11] and wheat
[12,13]. Bottom-up approaches apply population genetics
strategics in which the focus is to uncover genes show-
ing evidence for selection, followed up by attempting to
link these genes to relevant phenotypes using a bioinfor-
matics or a reverse genetics approach. Evidence for
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selective sweeps has been discovered in maize, rice,
wheat, soybean and sunflower [2,14-19].
Bottom-up approaches can be based on either a

whole-genome re-sequencing program [19-23] or by
concentrating on a pre-selected set of candidate genes
[2,24-26]. The whole-genome approach is powerful, but
scale-up requires a major investment. Typically, the
number of accessions targeted for re-sequencing is less
than 35 [19-23], a figure which reduces the detection
power and simultaneously increases the risk of false pos-
itives [27,28]. In addition, many of the SNPs identified
by re-sequencing do not in reality signal selection, but
rather are the outcome of “genetic hitchhiking” [29,30].
To overcome this problem, the “outlier scan” test has
been elaborated; this widely exploited test permits the
screening of a large number of accessions [31,32]. To
date, “Fst outliers” diagnostic of selection have been in-
formative in several plant species, including sunflower [33],
maize [16,34], white spruce [26], and other conifers [35].
In soybean (Glycine max (L.) Merr.), the traits most

closely associated with domestication are a marked in-
crease in the size of the inflorescences and in grain yield
per plant, and an enhanced level of apical dominance.
Other traits that likely have been subjected to prolonged
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selection are the loss of testa color and increased resist-
ance against a range of pathogens and insects. As in
most crops, the effect of domestication and subsequent
anthropogenic selection pressure has been to gradually
reduce the genetic diversity remaining in the pool of cul-
tivated materials. Cultivated soybean was likely domesti-
cated from G. soja Sieb. & Zucc [36]. The existence of a
genetic bottleneck has been established through an ana-
lysis of allelic diversity at both microsatellite and SNP
loci as well as within genic sequences [37-39]. Here, an
attempt was made to apply SNP genotyping to a panel
of both cultivated and wild accessions to identify signals
of selection, with a particular focus on testa color. The
analyses reveal that combining a population genetics
with a forward genetic approach provides an effective
method to identify sequences that underlie an agro-
nomic trait.

Methods
Plant material
The germplasm panel comprised 65 accessions of G. soja
and 353 of G. max. The provenance of the former in-
cluded locations within the proposed area where soybean
was domesticated (Figure 1). The cultivated population
comprised 238 landraces and 115 modern cultivars. A
diversity analysis of all of the wild accessions, 233 of the
landraces and 65 of the modern cultivars has been
reported elsewhere [37]. The additional 55 landraces and
Figure 1 The provenance of accessions of G. max and G. soja which for
modern cultivars.
modern cultivars originated from 12 countries and were
included to broaden the level of geographic representation
(Additional file 1).

Data acquisition
The allelic constitution of 363 of the 418 accessions at
554 SNP loci has been published previously [37], and
these were supplemented by equivalent data for 552 of
the 554 loci with respect to the 55 added accessions
(Additional file 2); the data were obtained using the
Illumina GoldenGate platform [40]. The GenCall and
GenTrain score thresholds were set at, respectively, 80%
and 0.6, as described elsewhere [37]. On average, each
accession harbored 2.1% missing data (range of 0–
13.9%). According to the soybean reference genome
(http://www.phytozome.net) [41], the 552 SNP loci are
dispersed throughout the genome, with 505 (91.5%) res-
iding within genic DNA. About 38% of the genic SNPs
lie within coding sequence, and 137 of the alleles at
these loci are non-synonymous. Testa color scores for
the Chinese germplasm were recovered from the Chinese
soybean germplasm catalog and various other sources
[42-44], while the remainder were obtained from the
Germplasm Resources Information Network (USDA) data-
base (http://www.ars-grin.gov/npgs/). Testa color was con-
sidered as a qualitative trait, with five possible states:
yellow, black, brown, cyan and double, following the
conventional system [45].
med the germplasm panel. (A) G. soja. (B) G. max landraces. (C) G. max
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Analyses of molecular diversity
Summary statistics, including the proportion of hetero-
zygosity in the population, Nei’s indices of gene diversity
and the frequency of major alleles were computed using
Powermarker v3.25 [46]. A phylogenetic tree was gener-
ated, based on a neighbor-joining analysis of shared-
allele distances [47] implemented in Powermarker v3.25,
and this was visualized using a routine within the MEGA
v4 software package [48]. Population structure was analyzed
using a Bayesian Markov Chain Monte Carlo approach
implemented in the software package STRUCTURE v2.1
[49]. The admixture and independent allele frequency
models were adopted, testing K values between 1 and 10.
Five runs were performed for each value of K, without
using previous population information. The burn-in time
and replication number were consistently set to 100,000.

Identifying signals of selection
Since the low density of SNP markers (one SNP per 2
Mbp genomic region) limited the utilization of a window-
sized approach to detect loci carrying a signature of
selection, the summary statistic approach fdist2 [50,51]
was adopted to identify SNP locus outliers. The focus was
on divergence at domestication loci, so pairwise compari-
sons between wild accessions and landraces, and between
wild accessions and modern cultivars were made. A neu-
tral distribution of Fst with 50,000 interactions at the 99%
confidence level was assumed, and the significance level
was set at 95%.

Results
Population structure and genetic differentiation
The addition of 55 accessions to the germplasm panel
resulted in a slightly higher estimate of the extent of
genetic diversity (Additional file 2) compared to that re-
ported previously [39]. The population structure obtained
Figure 2 The genetic architecture of the 418 accessions of cultivated
loci. Pink solid circles represent G. soja and green hollow ones for G. max a
correspond to G. soja and G. max. For legibility, the names of individual acc
was consistent with a discontinuity between the wild and
cultivated clusters (K = 2), but there was evidence for intro-
gression from wild to cultivated germplasm (Figure 2A, B).
Based on mean pairwise Fst values, the wild, landrace
and modern cultivar subsets were judged to be genetic-
ally distinct (p < 0.05). The extent of the differentiation
was greatest between the wild and modern cultivar
subsets (Fst = 0.162), and least between the landraces
and modern cultivars (Fst = 0.047).

Detection of domestication genes
The presence of signatures of selection during domesti-
cation was inferred by comparing the allelic status at the
552 SNP loci between the wild and the landrace
subgroups (“W-LC” comparison). In all, 6.3% of the loci
were identified as SNP locus outliers at the 95% confi-
dence level (Figure 3A). The Fst values of the SNP locus
outliers ranged from 0.36-0.80 and were 3.3-7.4 fold
higher than the mean Fst value taken over the full set of
loci (0.11). Applying the same test to the comparison
between the wild accessions and the modern cultivars
(“W-MC”) revealed 9.6% of the loci to be SNP locus out-
liers (Figure 3B). In all, nearly 70% (24/35) of the W-LC
outliers were also outliers in W-MC. The major alleles
of the wild population in these outlier loci changed to
minor alleles in the populations of landrace or modern
cultivars (Figure 4A). The strongest signal of selection
was associated with the locus BARC-022029-04261, at
which the major allele was represented in 82.0% of the
wild accessions, but just 1.1% in the landraces and 1.7%
in the modern cultivars.
In addition to the 24 shared SNP locus outliers, there

were 11 W-LC- and 29 W-MC-specific ones. The fre-
quencies of the major allele at most of the W-MC-
specific loci decreased step-wise from wild accessions to
landraces to modern cultivars (Figure 4B), indicating
and wild soybean. (A) A phylogenetic tree constructed from 552 SNP
ccessions. (B) In the STRUCTURE analysis, the groups formed at K = 2
essions have been omitted.



Figure 3 The detection of SNP locus outliers and related Fst values. The 554 loci have been ordered along the horizontal axis according to
their genomic location (Additional file 2). (A) The 35 outlier loci identified in the comparison between wild germplasm and the landraces, (B) The
53 outlier loci identified in the comparison between wild germplasm and the modern cultivars. The outliers associated with a confidence level of
>95% have been indicated by open squares. The vertical dotted lines separate the 20 chromosomes from one another.
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that these loci may be linked to genes/QTL subjected to
prolonged selection during post domestication. The
11 W-LC-specific SNP locus outliers may represent
domestication genes not subjected to selection during
post domestication.
The genomic location of each of the 64 SNP locus out-

liers was obtained by querying the cv. Williams 82 whole
genome sequence (http://www.phytozome.net) with the
sequences flanking the SNP. This analysis identified re-
gions on 19 of the 20 chromosomes (chromosome 7 had
no hits). Chromosome 13 (Gm13) harbored the largest
number of SNP locus outliers (six) (Additional file 3).
Nine of the outliers mapped to intergenic regions. Of
the 55 genic outliers, one was located in 5′-UTR, 25 in
3′-UTRs, 14 in introns and 15 (23.4%) within coding
sequences. Among the latter, 13 were non-synonymous.
Based on GO analysis, gene function was assignable to 38
of the W-LC+MC sequences harboring an SNP locus
outlier [52]. Eleven of the genes, including five of the 13
genes harboring a non-synonymous SNP, were associated
with the abiotic stress response (Additional file 3).

Association analysis for testa color
Most domesticated soybean materials are yellow-seeded,
while black testa types predominate in wild accessions
(Additional file 4). In the present germplasm panel, 47
of the 65 wild accessions were black-seeded, and 237 of
the 352 domesticated ones were yellow-seeded. The
yellow testa trait was more frequent in the set of modern
cultivars than in the set of landraces (Additional file 4).
A comparison of SNP genotype with testa color across
the full set of 418 accessions identified ten SNP loci po-
tentially linked to the trait (Additional file 5). Of these,
eight were W-LC +MC SNP locus outliers and two were
W-MC-specific outliers. An analysis of the distribution
of testa color and SNP locus outlier allele within the
three populations (wild accessions, landraces and mod-
ern cultivars) is given in Additional file 6. Allele frequen-
cies at nine of the ten loci (the exception was BARC-
045249-08914) were correlated with testa color in the
wild accession and modern cultivar populations, but the
correlation was only retained for two of the loci (BARC-
018681-02991 and BARC-018093-02513) when all three
populations were considered (Figure 5A). With respect
to BARC-018681-02991, 85.1% of the black testa wild
accessions and 61.1% of the black testa landraces
harbored the A allele, while 81.5% of the yellow testa
landraces and 98.0% of the yellow testa modern cultivars
carried the G allele. Similarly at BARC-018093-02513,
85.1% of the black testa wild accessions and 58.3% of the

http://www.phytozome.net


Figure 4 Allele frequencies at SNP locus outliers. (A) The 24 outliers in common between wild accessions vs landraces and wild accessions vs
modern cultivars. (B) The 29 outliers specific to the wild accessions vs modern cultivars comparison. (C) The 11 outliers specific to the wild
accessions vs landraces comparison.
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black testa landraces harbored the A allele, while 96.3%
of yellow testa landraces and 95.1% of the yellow testa
modern cultivars carried the G allele. Four genotype
combinations were recognized: Gen-1 (BARC-018681-
02991 A, BARC-018093-02513 A), Gen-2 (AG), Gen-3
(GA), and Gen-4 (GG). The association between geno-
type combination and testa color was somewhat stronger
than those based on a single locus: 77.0% of Gen-1
accessions were black seeded, while 79.3% of Gen-4 ones
were yellow seeded (Figure 5B).
Figure 5 SNP locus outliers associated with testa color. (A) The relationsh
landraces and the modern cultivars. (B) The frequency of the four haplotype c
Discussion
The strong selection pressure applied particularly during
crop domestication and later subsequent genetic im-
provement has greatly narrowed the genetic base of
cultivated types [23,53]. The current analysis identified
64 SNP locus outliers at which there was a significant
difference (P < 0.05) in diversity between wild and culti-
vated soybean populations, but failed to establish any
clear distinction between landraces and modern culti-
vars, consistent with the conclusion drawn in previous
ip between SNP genotype and testa color in wild accessions, the
lasses based on SNPs within BARC-018681-02991 and BARC-018093-02513.
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diversity studies that wild germplasm has become more
strongly differentiated from landraces than landraces
have become from modern cultivars [19,37,38]. A pedi-
gree analysis has established that landraces have pro-
vided more than 76% of the nuclear genome carried by
1,300 Chinese modern cultivars released over the period
1923–2005 [54].
Even though selection signals have been identified in a

number of genes, it is uncertain whether they are in
reality identifying the presence of a domestication-
associated genetic bottleneck [55] as opposed to reflect-
ing the long term outcome of genetic improvement [56].
SSR markers in the vicinity of QTL underlying traits of
agronomic importance tend to show a stronger level of
genetic differentiation between wild and cultivated types
than those unlinked to a known QTL [57]. When the
location of the present SNP set was aligned with
domestication-related QTL, it was established that six
SNP locus outliers were linked to a domestication QTL,
controlling the traits such as twining habit, maturity
time, flower color, seed weight, protein content and
resistance to soybean cyst nematode [58-62] (Additional
file 3). In addition, eight of the SNP locus outliers are
located around 1 Mbp distant from a QTL mapped in a
population bred from a cross between a wild accession
and a cultivated line [59-62]. Thus, it is likely that
several of the SNP locus outliers identified here will have
contributed to the phenotypic differentiation between
wild and cultivated soybeans. SNPs BARC-025897-
05144, BARC-031461- 07098 and BARC-022043-04271
used in this study are located around 1 Mbp distant
from an isoflavone synthase (IFS) gene (IFS2, Gly-
ma13g24200), which controls isoflavone accumulation
and is most expressed in the developing seed in soybean
[63-65]. As isoflavone was not subject to selection
during domestication, we used these SNPs to evaluate
whether there exists a big change to detect false positive
outliers. We observed for none of the relevant SNPs
significant outliers, which suggests that our study is only
marginally afflicted with an inflated rate of false-positives.
Testa color in soybean is controlled by five genes,

namely I, T, W1, R and O [66]. A screen of 170 cultivated
and 102 wild accessions based on sequence variation
within the testa color-associated genes encoding flavon-
oid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxy-
lase (F3′5′H) has shown that the joint allele constitution
was more predictive of testa color than was the allelic
state at either one of the two genes on its own [66].
Here, two SNP locus outliers (BARC-018681-02991 and
BARC-018093-02513) were associated with testa color.
One of the resulting four genptype combinations (Gen-4)
was carried by 79.3% of the yellow testa accessions, a
slightly lower proportion than was associated with a differ-
ently constituted haplotype [66]; at the same time, 77.4%
of the black-seeded accessions carried Gen-1, a rather
higher proportion than was recorded for the differently
constituted haplotype [66].
Some of the SNP locus outliers represent potential

markers for other aspects of morphological differenti-
ation between G. max and G. soja. Cultivated soybean
plants are shorter and more compact than wild soybean
plants, characteristics which better fit the requirements
of modern soybean production systems. One of the out-
liers (BARC-040965-07871) mapped within the 3′ UTR
of Glyma15g41130, a gene which encodes a SAUR-like
auxin-responsive protein family, and which is linked to a
QTL controlling plant height [67]. Members of this gene
family have been associated with the determination of
flowering time and the regulation of growth and plant
architecture [20].

Conclusions
Genetic variation is the sine qua non for crop improve-
ment. The domestication of soybean and the subsequent
prolonged period of selection have resulted in a major
loss in its genetic diversity. An overly narrow genetic
base compromises the potential for achieving continuing
gains from selection, underlining the importance of
germplasm conservation, particularly of wild forms. At
the same time, the identification of which genes were
involved in domestication is required to recognize novel
genes/alleles likely to contribute to soybean improve-
ment. The SNP locus outliers identified here should not
only aid in elaborating rational strategies for the conserva-
tion of wild germplasm [68], but may well also provide a
source of markers suitable for the application of molecular
breeding aimed at broadening the genetic base of soybean.
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