976 research outputs found
Recommended from our members
*-DCC: A platform to collect, annotate, and explore a large variety of sequencing experiments.
BackgroundOver the past few years the variety of experimental designs and protocols for sequencing experiments increased greatly. To ensure the wide usability of the produced data beyond an individual project, rich and systematic annotation of the underlying experiments is crucial.FindingsWe first developed an annotation structure that captures the overall experimental design as well as the relevant details of the steps from the biological sample to the library preparation, the sequencing procedure, and the sequencing and processed files. Through various design features, such as controlled vocabularies and different field requirements, we ensured a high annotation quality, comparability, and ease of annotation. The structure can be easily adapted to a large variety of species. We then implemented the annotation strategy in a user-hosted web platform with data import, query, and export functionality.ConclusionsWe present here an annotation structure and user-hosted platform for sequencing experiment data, suitable for lab-internal documentation, collaborations, and large-scale annotation efforts
Portrait of a people: the Jewish Heritage Collection dedicated to Mark and Dave Harris
The Jewish Heritage Collection was a gift made jointly to the Frankel Center for Judaic Studies and the University Library, which aptly reflects the comprehensive and unique nature of this collection. This collection combines materials traditionally found in libraries (e.g., books, pamphlets, printed ephemera, and manuscripts) with objects of museum quality (artwork and historical artifacts) and an assortment of items of humbler nature used in everyday life. The curators have chosen several themes around which to organize the display, in order to demonstrate both interesting items from the collection and topics for study it can easily support. The full Portrait of a People Online Exhibit follows a brief biography of Constance Harris and an excerpt from her book, The Way Jews Lived. as well as essays on how the collection was assembled and how it will be used written by the Elliot Gertel and Erica Lehrer.Special Collections Libraryhttp://deepblue.lib.umich.edu/bitstream/2027.42/108167/1/Portrait-of-a-people.pd
ACBAR: The Arcminute Cosmology Bolometer Array Receiver
We describe the Arcminute Cosmology Bolometer Array Receiver (ACBAR); a
multifrequency millimeter-wave receiver designed for observations of the Cosmic
Microwave Background (CMB) and the Sunyaev-Zel'dovich effect in clusters of
galaxies. The ACBAR focal plane consists of a 16-pixel, background-limited, 240
mK bolometer array that can be configured to observe simultaneously at 150,
220, 280, and 350 GHz. With 4-5' FWHM Gaussian beam sizes and a 3 degree
azimuth chop, ACBAR is sensitive to a wide range of angular scales. ACBAR was
installed on the 2 m Viper telescope at the South Pole in January 2001. We
describe the design of the instrument and its performance during the 2001 and
2002 observing seasons.Comment: 59 pages, 16 figures -- updated to reflect version published in ApJ
MesonNet 2013 International Workshop. Mini-proceedings
The mini-proceedings of the MesonNet 2013 International Workshop held in
Prague from June 17th to 19th, 2013, are presented. MesonNet is a research
network within EU HadronPhysics3 project (1/2012 -- 12/2014). The web page of
the conference, which contains all talks, can be found at
http://ipnp.mff.cuni.cz/mesonnet13Comment: 106 pages, 53 contributions. Mini-proceedings of the MesonNet 2013
International Workshop. Editors: K. Kampf, A. Kupsc, and P. Masjua
High resolution CMB power spectrum from the complete ACBAR data set
In this paper, we present results from the complete set of cosmic microwave
background (CMB) radiation temperature anisotropy observations made with the
Arcminute Cosmology Bolometer Array Receiver (ACBAR) operating at 150 GHz. We
include new data from the final 2005 observing season, expanding the number of
detector-hours by 210% and the sky coverage by 490% over that used for the
previous ACBAR release. As a result, the band-power uncertainties have been
reduced by more than a factor of two on angular scales encompassing the third
to fifth acoustic peaks as well as the damping tail of the CMB power spectrum.
The calibration uncertainty has been reduced from 6% to 2.1% in temperature
through a direct comparison of the CMB anisotropy measured by ACBAR with that
of the dipole-calibrated WMAP5 experiment. The measured power spectrum is
consistent with a spatially flat, LambdaCDM cosmological model. We include the
effects of weak lensing in the power spectrum model computations and find that
this significantly improves the fits of the models to the combined ACBAR+WMAP5
power spectrum. The preferred strength of the lensing is consistent with
theoretical expectations. On fine angular scales, there is weak evidence (1.1
sigma) for excess power above the level expected from primary anisotropies. We
expect any excess power to be dominated by the combination of emission from
dusty protogalaxies and the Sunyaev-Zel'dovich effect (SZE). However, the
excess observed by ACBAR is significantly smaller than the excess power at ell
> 2000 reported by the CBI experiment operating at 30 GHz. Therefore, while it
is unlikely that the CBI excess has a primordial origin; the combined ACBAR and
CBI results are consistent with the source of the CBI excess being either the
SZE or radio source contamination.Comment: Submitted to ApJ; Changed to apply a WMAP5-based calibration. The
cosmological parameter estimation has been updated to include WMAP
Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway
The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al
Improved Measurements of the CMB Power Spectrum with ACBAR
We report improved measurements of temperature anisotropies in the cosmic microwave background (CMB) radiation made with the Arcminute Cosmology Bolometer Array Receiver (ACBAR). In this paper, we use a new analysis technique and include 30% more data from the 2001 and 2002 observing seasons than the first release to derive a new set of band-power measurements with significantly smaller uncertainties. The planet-based calibration used previously has been replaced by comparing the flux of RCW38 as measured by ACBAR and BOOMERANG to transfer the WMAP-based BOOMERANG calibration to ACBAR. The resulting power spectrum is consistent with the theoretical predictions for a spatially flat, dark energy dominated LCDM cosmology including the effects of gravitational lensing. Despite the exponential damping on small angular scales, the primary CMB fluctuations are detected with a signal-to-noise ratio of greater than 4 up to multipoles of l=2000. This increase in the precision of the fine-scale CMB power spectrum leads to only a modest decrease in the uncertainties on the parameters of the standard cosmological model. At high angular resolution, secondary anisotropies are predicted to be a significant contribution to the measured anisotropy. A joint analysis of the ACBAR results at 150 GHz and the CBI results at 30 GHz in the multipole range 2000 < l < 3000 shows that the power, reported by CBI in excess of the predicted primary anisotropy, has a frequency spectrum consistent with the thermal Sunyaev-Zel'dovich effect and inconsistent with primary CMB. The results reported here are derived from a subset of the total ACBAR data set; the final ACBAR power spectrum at 150 GHz will include 3.7 times more effective integration time and 6.5 times more sky coverage than is used here
Spatio-Temporal Surrogates for Interaction of a Jet with High Explosives: Part I -- Analysis with a Small Sample Size
Computer simulations, especially of complex phenomena, can be expensive,
requiring high-performance computing resources. Often, to understand a
phenomenon, multiple simulations are run, each with a different set of
simulation input parameters. These data are then used to create an interpolant,
or surrogate, relating the simulation outputs to the corresponding inputs. When
the inputs and outputs are scalars, a simple machine learning model can
suffice. However, when the simulation outputs are vector valued, available at
locations in two or three spatial dimensions, often with a temporal component,
creating a surrogate is more challenging. In this report, we use a
two-dimensional problem of a jet interacting with high explosives to understand
how we can build high-quality surrogates. The characteristics of our data set
are unique - the vector-valued outputs from each simulation are available at
over two million spatial locations; each simulation is run for a relatively
small number of time steps; the size of the computational domain varies with
each simulation; and resource constraints limit the number of simulations we
can run. We show how we analyze these extremely large data-sets, set the
parameters for the algorithms used in the analysis, and use simple ways to
improve the accuracy of the spatio-temporal surrogates without substantially
increasing the number of simulations required
Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulphur stress response
The systematic accumulation of gene expression data, although revolutionary, is insufficient in itself for an understanding of system-level physiology. In the post-genomic era, the next cognitive step is linking genes to biological processes and assembling a mosaic of data into global models of biosystem function. A dynamic network of informational flows in Arabidopsis plants perturbed by sulphur depletion is presented here. With the use of an original protocol, the first blosystem response network was reconstructed from a time series of transcript and metabolite profiles, which, on the one hand, integrates complex metabolic and transcript data and, on the other hand, possesses a causal relationship. Using the informational fluxes within this reconstruction, it was possible to link system perturbation to response endpoints. Robustness and stress tolerance, as consequences of scale-free network topology, and hubs, as potential controllers of homeostasis maintenance, were revealed. Communication paths of propagating system excitement directed to physiological endpoints, such as anthocyanin accumulation and enforced root formation were dissected from the network. An auxin regulatory circuit involved in the control of a hypo-sulphur stress response was uncovered
- …
