634 research outputs found
Statics and dynamics of a cylindrical droplet under an external body force
We study the rolling and sliding motion of droplets on a corrugated substrate
by Molecular Dynamics simulations. Droplets are driven by an external body
force (gravity) and we investigate the velocity profile and dissipation
mechanisms in the steady state. The cylindrical geometry allows us to consider
a large range of droplet sizes. The velocity of small droplets with a large
contact angle is dominated by the friction at the substrate and the velocity of
the center of mass scales like the square root of the droplet size. For large
droplets or small contact angles, however, viscous dissipation of the flow
inside the volume of the droplet dictates the center of mass velocity that
scales linearly with the size. We derive a simple analytical description
predicting the dependence of the center of mass velocity on droplet size and
the slip length at the substrate. In the limit of vanishing droplet velocity we
quantitatively compare our simulation results to the predictions and good
agreement without adjustable parameters is found.Comment: Submitted to the Journal of Chemical Physic
Perceptions and attitudes towards shoulder padding and shoulder injury in rugby union
Objective To develop an understanding of the role of shoulder padding in preventing injuries in rugby by investigating player perceptions and attitudes towards shoulder padding and extending previous research into the nature of shoulder injuries in rugby. Methods A survey was distributed to current rugby players over 13 years old. Questions related to the participants' demographic, attitudes to shoulder padding and shoulder injury history. Results 616 rugby players responded to the survey. 66.1% of respondents had worn shoulder padding at some point during their career. Youth players (13-17 years old) and the older demographic (36+ years old) perceived shoulder padding to be more effective. 37.1% of respondents considered shoulder padding to be effective at preventing cuts and abrasions with 21.9% finding it very effective. 50.3% considered it to be effective at preventing contusion injury with 9.7% finding it very effective. 45.5% wore padding for injury prevention, while 19.2% wore padding to protect from reoccurring injury. 38.6% did not wear shoulder padding because they felt it was not needed for the game of rugby. Sprain/ ligament damage (57.5%) and bruising (55.5%) to the shoulder were the most commonly reported injury. Conclusions Research should focus on quantifying the injury preventive capabilities while also educating the rugby community on shoulder padding. Bruising, cuts and abrasion injuries to the shoulder are prevalent. The ability of shoulder padding to protect from these injuries should be further explored
Finite element model to simulate impact on a soft tissue simulant
A finite element model of an impact test on a soft tissue simulant, used as part of a shoulder surrogate, was developed in Ansys© LS-DYNAŸ. The surrogate consisted of a metal hemicylindrical core, with a diameter of 75 mm, covered with a 15 mm thick relaxed muscle simulant. The muscle simulant consisted of a 14 mm thick layer of silicone covered with 1 mm thick chamois leather to represent skin. The material properties of the silicone were obtained via quasi-static compression testing (curve fit with hyperelastic models) and compressive stress relaxation testing (curve fit with a Prony series). Outputs of the finite element models were compared against experimental data from impact tests on the shoulder surrogate at energies of 4.9, 9.8 and 14.7 J. The accuracy of the finite element models was assessed using four parameters: peak impact force, maximum deformation, impact duration and impulse. A 5-parameter Mooney-Rivlin material model combined with a 2-term Prony series was found to be suitable for modelling the soft tissue simulant of the shoulder surrogate. This model had under 10% overall mean deviation from the experimental values for the four assessment parameters across the three impact energies. Overall, the model provided a repeatable test method that can be adapted to help predict injuries to skin tissue and the performance/efficacy of personal protective equipment
The influence of oil extraction process of different rapeseed varieties on the ileal digestibility of crude protein and amino acids in broiler chickens
The current study assessed the effect of rapeseed variety and oil extraction process on the apparent and standardised ileal digestibility (AID, SID) of crude protein (CP) and amino acids (AA) in rapeseed co-products in broiler chickens. PR46W21 and DK Cabernet rapeseed varieties were de-oiled by soft and standard hexane extraction, producing soft rapeseed meal (SRSM) and rapeseed meal (RSM), respectively. The soft, non-standard hexane extraction method was designed to reduce heat treatment that occurs prior to hexane extraction in order to maximise potential genetic differences in digestibility values of rapeseed co-products. The test meals were incorporated into semi-synthetic diets at a level of 500 g/kg; diets were fed to 14-day old paired chickens (n = 6 pairs) for ten days, when ileal digesta was collected post-slaughter from Meckelâs diverticulum to the ileal-caecal junction. The AID and SID of CP and AA were determined using titanium dioxide as inert dietary marker. The variety PR46W21 showed a greater AID and SID of CP, arginine, leucine, methionine, cysteine, phenylalanine, valine and lysine in RSM compared to the DK Cabernet RSM (p < 0.05). The soft processing increased AID and SID of CP, histidine and lysine in SRSM of PR46W21 and DK Cabernet compared to their RSM counterparts (p < 0.05). An interaction between variety and processing was only observed for AID and SID of tryptophan (p < 0.001), as only in PR46W21 standard processing reduced the tryptophan SID compared to its soft processed counterpart. The data support the view that the selection of rapeseed variety and modification of thermal treatment during the oil extraction might improve nutritional value of rapeseed meals
Prevalence of electrocardiographic abnormalities in West-Asian and African male athletes
International audienceOBJECTIVES: To evaluate the electrocardiographic (ECG) characteristics of West-Asian, black and Caucasian male athletes competing in Qatar using the 2010 recommendations for 12-lead ECG interpretation by the European Society of Cardiology (ESC). DESIGN: Cardiovascular screening with resting 12-lead ECG analysis of 1220 national level athletes (800 West-Asian, 300 black and 120 Caucasian) and 135 West-Asian controls was performed. RESULTS: Ten per cent of athletes presented with 'uncommon' ECG findings. Black African descent was an independent predictor of 'uncommon' ECG changes when compared with West-Asian and Caucasian athletes (p0.05). Seven athletes (0.6%) were identified with a disease associated with sudden death; this prevalence was two times higher in black athletes than in West-Asian athletes (1% vs 0.5%), and no cases were reported in Caucasian athletes and West-Asian controls. Eighteen West-Asian and black athletes were identified with repolarisation abnormalities suggestive of a cardiomyopathy, but ultimately, none were diagnosed with a cardiac disease. CONCLUSION: West-Asian and Caucasian athletes demonstrate comparable rates of ECG findings. Black African ethnicity is positively associated with increased frequencies of 'uncommon' ECG traits. Future work should examine the genetic mechanisms behind ECG and myocardial adaptations in athletes of diverse ethnicity, aiding in the clinical differentiation between physiological remodelling and potential cardiomyopathy or ion channel disorders
Influence of clay properties on shoe-kinematics and friction during tennis movements
Tennis is a sport characterised by being played on different surfaces: hard court, grass and clay. These surfaces influence the style of play and tennis specific movements. Specifically on clay, most of the common movements performed by players (e.g. accelerating, side stepping and braking), are performed with some level of controlled sliding. In order to reduce the player's injury risk, and assess the shoe-surface requirements on clay surfaces, there is a need for a scientific understanding of the player's kinematics and tribological mechanisms occurring at the shoe-surface interface. The purpose of this study was to identify the kinematics of the shoe during the sliding phase, and to assess the friction that is present. Baseline areas of both ends of a clay court were prepared with two different mixes of clay, varying the particle size. Eight experienced clay players participated in this study which took place during the Conde de GodĂł tennis tournament in Barcelona, Spain. 3D kinematic data data was collected using two synchronised high speed video cameras, and after the tests, perception questionnaires were applied to the players. Additionally, three different mechanical devices were utilised to measure the friction of the two clay surfaces. Displacement and velocity data of the shoe in contact with the surface were correlated with the friction measurements from both clay surfaces. Results indicated that significant differences occurred between the two clay surfaces for some shoe kinematic data, and mechanical friction. However, the perception scores suggest the opposite behaviour stated by the mechanical test and shoe-kinematic data. The present study has provided evidence that shoe kinematics and friction of the shoe-surface interaction are affected by the surface conditions, specifically particle size
Molecular transport and flow past hard and soft surfaces: Computer simulation of model systems
The properties of polymer liquids on hard and soft substrates are
investigated by molecular dynamics simulation of a coarse-grained bead-spring
model and dynamic single-chain-in-mean-field (SCMF) simulations of a soft,
coarse-grained polymer model. Hard, corrugated substrates are modelled by an
FCC Lennard-Jones solid while polymer brushes are investigated as a
prototypical example of a soft, deformable surface. From the molecular
simulation we extract the coarse-grained parameters that characterise the
equilibrium and flow properties of the liquid in contact with the substrate:
the surface and interface tensions, and the parameters of the hydrodynamic
boundary condition. The so-determined parameters enter a continuum description
like the Stokes equation or the lubrication approximation.Comment: 41 pages, 13 figure
XUV interferometry using high-order harmonics: Application to plasma diagnostics
In this paper, we present and compare the two different XUV interferometric techniques using high-order harmonics that have been developed so far. The first scheme is based on the interference between two spatially separated phase-locked harmonic sources while the second uses two temporally separated harmonic sources. These techniques have been applied to plasma diagnostics in feasibility experiments where electron densities up to a few 1020 e[minus sign/cm3 have been measured with a temporal resolution of 200 fs. We present the main characteristics of each technique and discuss their respective potentials and limitations
- âŠ