We study the rolling and sliding motion of droplets on a corrugated substrate
by Molecular Dynamics simulations. Droplets are driven by an external body
force (gravity) and we investigate the velocity profile and dissipation
mechanisms in the steady state. The cylindrical geometry allows us to consider
a large range of droplet sizes. The velocity of small droplets with a large
contact angle is dominated by the friction at the substrate and the velocity of
the center of mass scales like the square root of the droplet size. For large
droplets or small contact angles, however, viscous dissipation of the flow
inside the volume of the droplet dictates the center of mass velocity that
scales linearly with the size. We derive a simple analytical description
predicting the dependence of the center of mass velocity on droplet size and
the slip length at the substrate. In the limit of vanishing droplet velocity we
quantitatively compare our simulation results to the predictions and good
agreement without adjustable parameters is found.Comment: Submitted to the Journal of Chemical Physic