75 research outputs found

    Dark mammoth trunks in the merging galaxy NGC 1316 and a mechanism of cosmic double helices

    Full text link
    NGC 1316 is a giant, elliptical galaxy containing a complex network of dark, dust features. The morphology of these features has been examined in some detail using a Hubble Space Telescope, Advanced Camera for Surveys image. It is found that most of the features are constituted of long filaments. There also exist a great number of dark structures protruding inwards from the filaments. Many of these structures are strikingly similar to elephant trunks in H II regions in the Milky Way Galaxy, although much larger. The structures, termed mammoth trunks, generally are filamentary and often have shapes resembling the letters V or Y. In some of the mammoth trunks the stem of the Y can be resolved into two or more filaments, many of which showing signs of being intertwined. A model of the mammoth trunks, related to a recent theory of elephant trunks, is proposed. Based on magnetized filaments, the model is capable of giving an account of the various shapes of the mammoth trunks observed, including the twined structures.Comment: Accepted for publication in Astrophysics & Space Scienc

    Structure of the interstellar medium around Cas A

    Full text link
    We present a three-year series of observations at 24 microns with the Spitzer Space Telescope of the interstellar material in a 200 x 200 arcmin square area centered on Cassiopeia A. Interstellar dust heated by the outward light pulse from the supernova explosion emits in the form of compact, moving features. Their sequential outward movements allow us to study the complicated three-dimensional structure of the interstellar medium (ISM) behind and near Cassiopeia A. The ISM consists of sheets and filaments, with many structures on a scale of a parsec or less. The spatial power spectrum of the ISM appears to be similar to that of fractals with a spectral index of 3.5. The filling factor for the small structures above the spatial wavenumber k ~ 0.5 cycles/pc is only ~ 0.4%.Comment: 29 pages including 10 figures; accepted by The Astrophysical Journa

    The magnetar emission in the IR band: the role of magnetospheric currents

    Full text link
    There is a general consensus about the fact that the magnetar scenario provides a convincing explanation for several of the observed properties of the Anomalous X-ray Pulsars and the Soft Gamma Repeaters. However, the origin of the emission observed at low energies is still an open issue. We present a quantitative model for the emission in the optical/infrared band produced by curvature radiation from magnetospheric charges, and compare results with current magnetars observations.Comment: 6 Pages, 2 Figures. Astrophysics and Space Science, in press. Proceedings of the ICREA Workshop on The High-Energy Emission from Pulsars and their Systems, Sant Cugat, April 12-16 201

    Magnetic Fields in Star-Forming Molecular Clouds II. The Depolarization Effect in the OMC-3 Filament of Orion A

    Get PDF
    Polarized 850 micron thermal emission data of the region OMC-3 in the Orion A molecular cloud are presented. These data, taken in 1998 with the SCUBA polarimeter mounted on the James Clerk Maxwell Telescope, have been re-reduced using improved software. The polarization pattern is not suggestive of a uniform field structure local to OMC-3, nor does the orientation of the vectors align with existing polarimetry maps of the OMC-1 core 20' to the south. The depolarization toward high intensity regions cannot be explained by uniform field geometry except in the presence of changing grain structure, which is most likely to occur in regions of high density or temperature (i.e. the embedded cores). The depolarization in fact occurs along the length of the filamentary structure of OMC-3 and is not limited to the vicinity of the bright cores. Such a polarization pattern is predicted by helical field models for filamentary clouds. We present three scenarios to explain the observed polarization pattern of OMC-3 in terms of a helical field geometry. Qualitative models incorporating a helical field geometry are presented for two cases.Comment: 57 pages, 12 figures, 3 tables; accepted for publication in Ap

    Electric current circuits in astrophysics

    Get PDF
    Cosmic magnetic structures have in common that they are anchored in a dynamo, that an external driver converts kinetic energy into internal magnetic energy, that this magnetic energy is transported as Poynting fl ux across the magnetically dominated structure, and that the magnetic energy is released in the form of particle acceleration, heating, bulk motion, MHD waves, and radiation. The investigation of the electric current system is particularly illuminating as to the course of events and the physics involved. We demonstrate this for the radio pulsar wind, the solar flare, and terrestrial magnetic storms

    Paediatric non-progression following grandmother-to-child HIV transmission

    Get PDF
    Background In contrast to adult HIV infection, where slow disease progression is strongly linked to immune control of HIV mediated by protective HLA class I molecules such as HLA-B*81:01, the mechanisms by which a minority of HIV-infected children maintain normal-for-age CD4 counts and remain clinically healthy appear to be HLA class I-independent and are largely unknown. To better understand these mechanisms, we here studied a HIV-infected South African female, who remained a non-progressor throughout childhood. Results Phylogenetic analysis of viral sequences in the HIV-infected family members, together with the history of grand-maternal breast-feeding, indicated that, unusually, the non-progressor child had been infected via grandmother-to-child transmission. Although HLA-B*81:01 was expressed by both grandmother and grand-daughter, autologous virus in each subject encoded an escape mutation L188F within the immunodominant HLA-B*81:01-restricted Gag-specific epitope TL9 (TPQDLNTML, Gag 180–188). Since the transmitted virus can influence paediatric and adult HIV disease progression, we investigated the impact of the L188F mutant on replicative capacity. When this variant was introduced into three distinct HIV clones in vitro, viral replicative capacity was abrogated altogether. However, a virus constructed using the gag sequence of the non-progressor child replicated as efficiently as wildtype virus. Conclusion These findings suggest alternative sequences of events: the transmission of the uncompensated low fitness L188F to both children, potentially contributing to slow progression in both, consistent with previous studies indicating that disease progression in children can be influenced by the replicative capacity of the transmitted virus; or the transmission of fully compensated virus, and slow progression here principally the result of HLA-independent host-specific factors, yet to be defined

    Rhythm Generation through Period Concatenation in Rat Somatosensory Cortex

    Get PDF
    Rhythmic voltage oscillations resulting from the summed activity of neuronal populations occur in many nervous systems. Contemporary observations suggest that coexistent oscillations interact and, in time, may switch in dominance. We recently reported an example of these interactions recorded from in vitro preparations of rat somatosensory cortex. We found that following an initial interval of coexistent gamma (∼25 ms period) and beta2 (∼40 ms period) rhythms in the superficial and deep cortical layers, respectively, a transition to a synchronous beta1 (∼65 ms period) rhythm in all cortical layers occurred. We proposed that the switch to beta1 activity resulted from the novel mechanism of period concatenation of the faster rhythms: gamma period (25 ms)+beta2 period (40 ms) = beta1 period (65 ms). In this article, we investigate in greater detail the fundamental mechanisms of the beta1 rhythm. To do so we describe additional in vitro experiments that constrain a biologically realistic, yet simplified, computational model of the activity. We use the model to suggest that the dynamic building blocks (or motifs) of the gamma and beta2 rhythms combine to produce a beta1 oscillation that exhibits cross-frequency interactions. Through the combined approach of in vitro experiments and mathematical modeling we isolate the specific components that promote or destroy each rhythm. We propose that mechanisms vital to establishing the beta1 oscillation include strengthened connections between a population of deep layer intrinsically bursting cells and a transition from antidromic to orthodromic spike generation in these cells. We conclude that neural activity in the superficial and deep cortical layers may temporally combine to generate a slower oscillation

    Theory of twisted trunks

    No full text
    Using the 2.6 m Nordic Optical Telescope we have observed a large number of elephant trunks in several HI

    Amplitude and phase relationship between alpha and beta oscillations in the human electroencephalogram

    No full text
    The relationship between the electro-encephalographic (EEG) alpha and beta oscillations in the resting condition was investigated in the study. EEGs were recorded in 33 subjects, and alpha (7.5–12.5 Hz) and beta (15–25 Hz) oscillations were extracted with the use of a modified wavelet transform. Power, peak frequency and phase synchronisation were evaluated for both types of oscillation. The average beta—alpha peak frequency ratio was about 1.9–2.0 for all electrode derivations. The peak frequency of beta activity was within 70–90% of the 95% confidence interval of twice the alpha frequency. A significant (p<0.05) linear regression was found between beta and alpha power in all derivations in 32 subjects, with the slope of the regression line being ≈0.3. There was no significant difference in the slope of the line in different electrode locations, although the power correlation was strongest in the occipital locations where alpha and beta oscillations had the largest power. A significant 1∶2 phase synchronisation was present between the alpha and beta oscillations, with a phase lag of about Π/2 in all electrode derivations. The strong frequency relationship between the resting beta and alpha oscillations suggests that they are generated by a common mechanism. Power and phase relationships were weaker, suggesting that these properties can be modulated by additional mechanisms as well as be influenced by noise. A careful distinction between alpha-dependent and alpha-independent beta activity should be considered when making statements about the possible significance of genuine beta activity in different neurophysiological mechanisms
    • …
    corecore