239 research outputs found

    Qualitative Analysis of Subsurface Water Quality in Challakere Taluk, Karnataka, India

    Get PDF
    Rural India relies mainly on groundwater for drinking and agriculture. Unsustainable withdrawal of groundwater has led to the spectra of depleting the problem of water scarcity. The available groundwater quality is not only contaminated by hazardous pathogenic germs and anthropogenic substances but also geogenic substances is adversely affect the water supply of many regions. The groundwater of Challakere taluk had many threats such as anthropogenic activities, quality deterioration by agricultural activities and over exploitation and also persistence of continuous drought condition. This paper mainly addresses the physico-chemical concentration of 30 groundwater samples during August 2009 in Challakere taluk, Karnataka (India). The results of all the findings are discussed in details which reflect the present status of the groundwater quality of the study area. Groundwater is extremely important to the future economy and growth of rural India. If the resource is to remain available as high quality water for future generation it is important to protect from possible contamination. Hence it is recommended that suitable water quality management is essential to avoid any further contamination

    Spatial Variation of Surface Water Quality of Vrishabhavathi Watershed Using GISÂ

    Get PDF
    Vrishabhavathi Watershed is a constituent of the Arkavathi River Basin, Bangalore Urban and Ramanagara District and covers an area of 381.465Km2, representing seasonally dry tropical climate. In Vrishabhavathi watershed Vrishabhavathi River is the main surface water source which is tributary of river Arkavathy, which joins the Cauvery River. It drains a major parts of Bangalore metropolis and is an outlet for domestic and industrial effluent of that area. Earlier this surface water is mainly used for agricultural purposes and drinking purposes. Since this watershed lies in Bangalore urban and Bangalore rural area, today this water is only used for agricultural purposes which are also not safe. In order to assess the surface water quality the present study has been undertaken to map the spatial variability of the surface water quality in the watershed using Geographical Information System. The water qualities of 24 stations were randomly selected in Vrishabhavathi watershed for the present study.GIS is an efficient tool for representation and analysis of spatial information related to water quality analysis. The spatial variation map for sensitive water quality parameters are generated and integrated using Arc GIS10.1. The final integrated map shows 3 priority classes such as Acceptable, Poor and Very poor water quality zones of the study area and provides a guideline for suitability of water for irrigation purpose

    Parametric analysis of Asymmetric Spur Gear Tooth

    Get PDF
    Abstract Gear is a machine element used to transmit motion and power between rotating shafts by means of progressive engagement of projections called teeth. Gears are classified according to the relative position of the axes of the shaft, type of gearing, peripheral velocity of the gears and position of teeth on gear surface. Presently gears are suffered by backlash the amount by which the width of a tooth space exceeds the thickness of the engaging tooth on the pitch circles, undercut a condition in generated gear teeth when any part of the fillet curve lies inside of a line drawn tangent to the working profile at its lowest point and interference is an important aspect of kinematics of gearing. When the gear tooth tries to dig below the base circle of mating gear then the gear tooth action shall be non conjugate and violate the fundamental law of gearing this non conjugate action is called the interference . These defects can be eliminated by increasing the pressure angle, by increasing the addendum of mating gear and another way of increasing the load capacity of transmissions is to modify the involute geometry. This has been a standard practice in sophisticated gear design for many years. The nomenclature describing these types of gear modifications can be quite confusing with reference to addendum modification or profile shift. An additional alteration that is very rarely used is to make the gears asymmetric with different pressure angles for each side of the tooth. An asymmetric spur gear drive means that larger and smaller pressure angles are applied for the driving and coast sides. The two profiles of a gear tooth are functionally different for most gear drives. The workload on one side of profile is significantly higher than the other Gears. The main objective of this paper is to generate asymmetric spur gear tooth geometry for different pressure angles on drive and coast side using computer programme. Developed programme is used to create a finite element model of gear tooth to study the effect of bending stress at the critical section for different pressure angles, different number of teeth and module. To study the effect of above asymmetric spur tooth parameters Finite Element Analysis software ANSYS was used

    The mechanism of differential neutralization of dengue serotype 3 strains by monoclonal antibody 8A1

    Get PDF
    While previous studies have demonstrated that envelope (E) glycoprotein variation between dengue viruses (DENV) genotypes can influence antibody neutralization potency, the mechanisms of variable neutralization remain incompletely understood. Here we characterize epitope antibody interactions of a DENV-3 EDIII binding mouse mAb 8A1 which displays highly variable neutralizing activity against DENV-3 genotypes. Using a DENV-3 reverse genetics platform, we characterize ability of 8A1 to bind and neutralize naturally occurring DENV-3 E genotypic variant viruses. Introduction of single and multiple amino acid mutations into the parental clone background demonstrates that mutations at positions 301 and 383 on EDIII are responsible for 8A1 differential neutralization phenotypes. ELISA and surface plasmon resonance (SPR) studies indicate differences in binding are responsible for the variable neutralization. Variability at position 301 primarily determined binding difference through influencing antibody-EDIII dissociation rate. Our findings are relevant to the many groups focusing on DENV EDIII as a vaccine target

    The mechanism of differential neutralization of dengue serotype 3 strains by monoclonal antibody 8A1

    Get PDF
    While previous studies have demonstrated that envelope (E) glycoprotein variation between dengue viruses (DENV) genotypes can influence antibody neutralization potency, the mechanisms of variable neutralization remain incompletely understood. Here we characterize epitope antibody interactions of a DENV-3 EDIII binding mouse mAb 8A1 which displays highly variable neutralizing activity against DENV-3 genotypes. Using a DENV-3 reverse genetics platform, we characterize ability of 8A1 to bind and neutralize naturally occurring DENV-3 E genotypic variant viruses. Introduction of single and multiple amino acid mutations into the parental clone background demonstrates that mutations at positions 301 and 383 on EDIII are responsible for 8A1 differential neutralization phenotypes. ELISA and surface plasmon resonance (SPR) studies indicate differences in binding are responsible for the variable neutralization. Variability at position 301 primarily determined binding difference through influencing antibody-EDIII dissociation rate. Our findings are relevant to the many groups focusing on DENV EDIII as a vaccine target

    Positional identification of variants of Adamts16 linked to inherited hypertension

    Get PDF
    A previously reported blood pressure (BP) quantitative trait locus on rat Chromosome 1 was isolated in a short congenic segment spanning 804.6 kb. The 804.6 kb region contained only two genes, LOC306664 and LOC306665. LOC306664 is predicted to translate into A Disintegrin-like and Metalloproteinase with Thrombospondin Motifs-16 (Adamts16). LOC306665 is a novel gene. All predicted exons of both LOC306664 and LOC306665 were sequenced. Non-synonymous variants were identified in only one of these genes, LOC306664. These variants were naturally existing polymorphisms among inbred, outbred and wild rats. The full-length rat transcript of Adamts16 was detected in multiple tissues. Similar to ADAMTS16 in humans, expression of Adamts16 was prominent in the kidney. Renal transcriptome analysis suggested that a network of genes related to BP was differential between congenic and S rats. These genes were also differentially expressed between kidney cell lines with or without knock-down of Adamts16. Adamts16 is conserved between rats and humans. It is a candidate gene within the homologous region on human Chromosome 5, which is linked to systolic and diastolic BP in the Quebec Family Study. Multiple variants, including an Ala to Pro variant in codon 90 (rs2086310) of human ADAMTS16, were associated with human resting systolic BP (SBP). Replication study in GenNet confirmed the association of two variants of ADAMTS16 with SBP, including rs2086310. Overall, our report represents a high resolution positional cloning and translational study for Adamts16 as a candidate gene controlling B

    SNPs and Other Features as They Predispose to Complex Disease: Genome-Wide Predictive Analysis of a Quantitative Phenotype for Hypertension

    Get PDF
    Though recently they have fallen into some disrepute, genome-wide association studies (GWAS) have been formulated and applied to understanding essential hypertension. The principal goal here is to use data gathered in a GWAS to gauge the extent to which SNPs and their interactions with other features can be combined to predict mean arterial blood pressure (MAP) in 3138 pre-menopausal and naturally post-menopausal white women. More precisely, we quantify the extent to which data as described permit prediction of MAP beyond what is possible from traditional risk factors such as blood cholesterol levels and glucose levels. Of course, these traditional risk factors are genetic, though typically not explicitly so. In all, there were 44 such risk factors/clinical variables measured and 377,790 single nucleotide polymorphisms (SNPs) genotyped. Data for women we studied are from first visit measurements taken as part of the Atherosclerotic Risk in Communities (ARIC) study. We begin by assessing non-SNP features in their abilities to predict MAP, employing a novel regression technique with two stages, first the discovery of main effects and next discovery of their interactions. The long list of SNPs genotyped is reduced to a manageable list for combining with non-SNP features in prediction. We adapted Efron's local false discovery rate to produce this reduced list. Selected non-SNP and SNP features and their interactions are used to predict MAP using adaptive linear regression. We quantify quality of prediction by an estimated coefficient of determination (R2). We compare the accuracy of prediction with and without information from SNPs

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
    corecore