198 research outputs found

    SOD2 polymorphisms: unmasking the effect of polymorphism on splicing

    Get PDF
    BACKGROUND: The SOD2 gene encodes an antioxidant enzyme, mitochondrial superoxide dismutase. SOD2 polymorphisms are of interest because of their potential roles in the modulation of free radical-mediated macromolecular damage during aging. RESULTS: We identified a new splice variant of SOD2 in human lymphoblastoid cell lines (LCLs). The alternatively spliced product was originally detected by exon trapping of a minigene in order to examine the consequences of an intronic polymorphism found upstream of exon 4 (nucleotide 8136, 10T vs 9T). Examination of the transcripts derived from the endogenous loci in five LCLs with or without the intron 3 polymorphism revealed low levels of an in-frame deletion of exon 4 that were different from those detected by the exon trap assay. This suggested that exon trapping of the minigene unmasked the effect of the 10T vs 9T polymorphism on the splicing of the adjacent exon. We also determined the frequencies of single nucleotide polymorphisms in a sample of US African-Americans and non-African-Americans ages 65 years and older who participated in the 1999 wave of the National Long Term Care Survey (NLTCS). Particularly striking differences between African-Americans and non-African-Americans were found for the frequencies of genotypes at the 10T/9T intron 3 polymorphism. CONCLUSION: Exon trapping can unmask in vitro splicing differences caused by a 10T/9T intron 3 polymorphism. Given the recent evidence that SOD2 is in a region on chromosome 6 linked to susceptibility to hypertension, it will be of interest to investigate possible associations of this polymorphism with cardiovascular disorders

    A gender perspective on factors that influence outdoor recreational physical activity among the elderly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical activity (PA) is part of a healthy lifestyle and prevents many chronic health problems, in addition to promoting mental health. PA performed outdoors has been found particularly good for promoting one's well-being. The aim of this study was to investigate the extent to which outdoor recreational PA was carried out during 1 year, and the factors influencing such activities from a gender perspective among persons ≥ 60 years of age.</p> <p>Methods</p> <p>This study included 999 individuals 60-96 years of age living in the south eastern part of Sweden. Data collection was carried out during the years of 2001-2003. We measured the amount of regular light and/or intense outdoor recreational PA performed during the last year and determined the probability of performing PA as a function of 10 variables covering individual and socioeconomic factors.</p> <p>Results</p> <p>Our results suggest that being independent physically and healthy enough to manage one's personal hygiene and having access to areas for country walks were the most important factors associated with the probability of engaging in outdoor recreational PA for both men and women. Despite the level of performance being almost equal for the sexes as two-thirds of both had performed outdoor recreational PA during the preceding year more factors, i.e., living alone, being unable to cover an unexpected cost, fear of being violated, and fear of falling, were associated with the possibilities of engaging in outdoor recreational PA among women. Also increasing age seems to affect activities among women negatively to a higher extent than men.</p> <p>Conclusion</p> <p>Men and women seem to have different opportunities and needs with respect to performing PA. These considerations do not seem to be sufficiently taken into account today and improvements could be made concerning e.g., health-promoting activities suggested to the elderly by healthcare personnel and spatial planning within society. Promoting outdoor recreational PA that has restorative effects on well-being needs to focus on activities which are attractive and affordable for the majority of both men and women.</p

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income&nbsp;countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was &lt;1.1 kg m–2 in the vast majority of&nbsp;countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world

    Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants

    Get PDF
    BACKGROUND: One of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes. METHODS: We pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence—defined as fasting plasma glucose of 7·0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs—in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue. FINDINGS: We used data from 751 studies including 4 372 000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4·3% (95% credible interval 2·4–7·0) in 1980 to 9·0% (7·2–11·1) in 2014 in men, and from 5·0% (2·9–7·9) to 7·9% (6·4–9·7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28·5% due to the rise in prevalence, 39·7% due to population growth and ageing, and 31·8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target. INTERPRETATION: Since 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults affected, has increased faster in low-income and middle-income countries than in high-income countries. FUNDING: Wellcome Trust

    Genetic Signatures of Exceptional Longevity in Humans

    Get PDF
    Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity
    corecore