163 research outputs found

    Endovascular retrieval of two migrated venous stents by means of balloon catheters

    Get PDF
    AbstractThe usefulness of vascular stenting was demonstrated in both arterial and venous applications to restore patency and improve suboptimal results after percutaneous transluminal angioplasty. Dislodgment of venous stents with an embolization into the right cavities or the pulmonary artery, however, is one of the most feared complications of this procedure. Percutaneous removal of these migrated stents is an appealing method of replacing more invasive operative intervention with cardiopulmonary bypass, which may be very hazardous in these often severely ill patients. We describe the cases of two patients with stents that migrated into the right ventricle and the pulmonary artery. In one patient, we were able to successfully remove these stents by using an angioplasty balloon with an operative extraction from the iliac vein, thereby obviating the need for a major operative procedure. (J Vasc Surg 1998;28:541-6.

    How Gibbs distributions may naturally arise from synaptic adaptation mechanisms. A model-based argumentation

    Get PDF
    This paper addresses two questions in the context of neuronal networks dynamics, using methods from dynamical systems theory and statistical physics: (i) How to characterize the statistical properties of sequences of action potentials ("spike trains") produced by neuronal networks ? and; (ii) what are the effects of synaptic plasticity on these statistics ? We introduce a framework in which spike trains are associated to a coding of membrane potential trajectories, and actually, constitute a symbolic coding in important explicit examples (the so-called gIF models). On this basis, we use the thermodynamic formalism from ergodic theory to show how Gibbs distributions are natural probability measures to describe the statistics of spike trains, given the empirical averages of prescribed quantities. As a second result, we show that Gibbs distributions naturally arise when considering "slow" synaptic plasticity rules where the characteristic time for synapse adaptation is quite longer than the characteristic time for neurons dynamics.Comment: 39 pages, 3 figure

    Cellular localization, accumulation and trafficking of double-walled carbon nanotubes in human prostate cancer cells

    Get PDF
    Carbon nanotubes (CNTs) are at present being considered as potential nanovectors with the ability to deliver therapeutic cargoes into living cells. Previous studies established the ability of CNTs to enter cells and their therapeutic utility, but an appreciation of global intracellular trafficking associated with their cellular distribution has yet to be described. Despite the many aspects of the uptake mechanism of CNTs being studied, only a few studies have investigated internalization and fate of CNTs inside cells in detail. In the present study, intracellular localization and trafficking of RNA-wrapped, oxidized double-walled CNTs (oxDWNT–RNA) is presented. Fixed cells, previously exposed to oxDWNT–RNA, were subjected to immunocytochemical analysis using antibodies specific to proteins implicated in endocytosis; moreover cell compartment markers and pharmacological inhibitory conditions were also employed in this study. Our results revealed that an endocytic pathway is involved in the internalization of oxDWNT–RNA. The nanotubes were found in clathrin-coated vesicles, after which they appear to be sorted in early endosomes, followed by vesicular maturation, become located in lysosomes. Furthermore, we observed co-localization of oxDWNT–RNA with the small GTP-binding protein (Rab 11), involved in their recycling back to the plasma membrane via endosomes from the trans-golgi network

    Epidemiology and clinical features of vivax malaria imported to Europe: Sentinel surveillance data from TropNetEurop

    Get PDF
    BACKGROUND: Plasmodium vivax is the second most common species among malaria patients diagnosed in Europe, but epidemiological and clinical data on imported P. vivax malaria are limited. The TropNetEurop surveillance network has monitored the importation of vivax malaria into Europe since 1999. OBJECTIVES: To present epidemiological and clinical data on imported P. vivax malaria collected at European level. MATERIAL AND METHODS: Data of primary cases of P. vivax malaria reported between January 1999 and September 2003 were analysed, focusing on disease frequency, patient characteristics, place of infection, course of disease, treatment and differences between network-member countries. RESULTS: Within the surveillance period 4,801 cases of imported malaria were reported. 618 (12.9%) were attributed to P. vivax. European travellers and immigrants were the largest patient groups, but their proportion varied among the reporting countries. The main regions of infection in descending order were the Indian subcontinent, Indonesia, South America and Western and Eastern Africa, as a group accounting for more than 60% of the cases. Regular use of malaria chemoprophylaxis was reported by 118 patients. With 86 (inter-quartile range 41–158) versus 31 days (inter-quartile range 4–133) the median symptom onset was significantly delayed in patients with chemoprophylaxis (p < 0.0001). Common complaints were fever, headache, fatigue, and musculo-skeletal symptoms. All patients survived and severe clinical complications were rare. Hospitalization was provided for 60% and primaquine treatment administered to 83.8% of the patients, but frequencies varied strongly among reporting countries. CONCLUSIONS: TropNetEurop data can contribute to the harmonization of European treatment policies

    A stochastic automaton shows how enzyme assemblies may contribute to metabolic efficiency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The advantages of grouping enzymes into metabolons and into higher order structures have long been debated. To quantify these advantages, we have developed a stochastic automaton that allows experiments to be performed in a virtual bacterium with both a membrane and a cytoplasm. We have investigated the general case of transport and metabolism as inspired by the phosphoenolpyruvate:sugar phosphotransferase system (PTS) for glucose importation and by glycolysis.</p> <p>Results</p> <p>We show that PTS and glycolytic metabolons can increase production of pyruvate eightfold at low concentrations of phosphoenolpyruvate. A fourfold increase in the numbers of enzyme EI led to a 40% increase in pyruvate production, similar to that observed <it>in vivo </it>in the presence of glucose. Although little improvement resulted from the assembly of metabolons into a hyperstructure, such assembly can generate gradients of metabolites and signaling molecules.</p> <p>Conclusion</p> <p><it>in silico </it>experiments may be performed successfully using stochastic automata such as HSIM (Hyperstructure Simulator) to help answer fundamental questions in metabolism about the properties of molecular assemblies and to devise strategies to modify such assemblies for biotechnological ends.</p

    A view of Neural Networks as dynamical systems

    Full text link
    We consider neural networks from the point of view of dynamical systems theory. In this spirit we review recent results dealing with the following questions, adressed in the context of specific models. 1. Characterizing the collective dynamics; 2. Statistical analysis of spikes trains; 3. Interplay between dynamics and network structure; 4. Effects of synaptic plasticity.Comment: Review paper, 51 pages, 10 figures. submitte

    Impact of receptor clustering on ligand binding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cellular response to changes in the concentration of different chemical species in the extracellular medium is induced by ligand binding to dedicated transmembrane receptors. Receptor density, distribution, and clustering may be key spatial features that influence effective and proper physical and biochemical cellular responses to many regulatory signals. Classical equations describing this kind of binding kinetics assume the distributions of interacting species to be homogeneous, neglecting by doing so the impact of clustering. As there is experimental evidence that receptors tend to group in clusters inside membrane domains, we investigated the effects of receptor clustering on cellular receptor ligand binding.</p> <p>Results</p> <p>We implemented a model of receptor binding using a Monte-Carlo algorithm to simulate ligand diffusion and binding. In some simple cases, analytic solutions for binding equilibrium of ligand on clusters of receptors are provided, and supported by simulation results. Our simulations show that the so-called "apparent" affinity of the ligand for the receptor decreases with clustering although the microscopic affinity remains constant.</p> <p>Conclusions</p> <p>Changing membrane receptors clustering could be a simple mechanism that allows cells to change and adapt its affinity/sensitivity toward a given stimulus.</p

    Deciphering Proteomic Signatures of Early Diapause in Nasonia

    Get PDF
    Insect diapause is an alternative life-history strategy used to increase longevity and survival in harsh environmental conditions. Even though some aspects of diapause are well investigated, broader scale studies that elucidate the global metabolic adjustments required for this remarkable trait, are rare. In order to better understand the metabolic changes during early insect diapause, we used a shotgun proteomics approach on early diapausing and non-diapausing larvae of the recently sequenced hymenopteran model organism Nasonia vitripennis. Our results deliver insights into the molecular underpinnings of diapause in Nasonia and corroborate previously reported diapause-associated features for invertebrates, such as a diapause-dependent abundance change for heat shock and storage proteins. Furthermore, we observed a diapause-dependent switch in enzymes involved in glycerol synthesis and a vastly changed capacity for protein synthesis and degradation. The abundance of structural proteins and proteins involved in protein synthesis decreased with increasing diapause duration, while the abundance of proteins likely involved in diapause maintenance (e.g. ferritins) increased. Only few potentially diapause-specific proteins were identified suggesting that diapause in Nasonia relies to a large extent on a modulation of pre-existing pathways. Studying a diapause syndrome on a proteomic level rather than isolated pathways or physiological networks, has proven to be an efficient and successful avenue to understand molecular mechanisms involved in diapause

    Feasibility of Onchocerciasis Elimination with Ivermectin Treatment in Endemic Foci in Africa: First Evidence from Studies in Mali and Senegal

    Get PDF
    The control of onchocerciasis, or river blindness, is based on annual or six-monthly ivermectin treatment of populations at risk. This has been effective in controlling the disease as a public health problem, but it is not known whether it can also eliminate infection and transmission to the extent that treatment can be safely stopped. Many doubt that this is feasible in Africa. A study was undertaken in three hyperendemic onchocerciasis foci in Mali and Senegal where treatment has been given for 15 to 17 years. The results showed that only few infections remained in the human population and that transmission levels were everywhere below postulated thresholds for elimination. Treatment was subsequently stopped in test areas in each focus, and follow-up evaluations did not detect any recrudescence of infection or transmission. Hence, the study has provided the first evidence that onchocerciasis elimination is feasible with ivermectin treatment in some endemic foci in Africa. Although further studies are needed to determine to what extent these findings can be extrapolated to other areas in Africa, the principle of onchocerciasis elimination with ivermectin treatment has been established

    A discrete time neural network model with spiking neurons II. Dynamics with noise

    Full text link
    We provide rigorous and exact results characterizing the statistics of spike trains in a network of leaky integrate and fire neurons, where time is discrete and where neurons are submitted to noise, without restriction on the synaptic weights. We show the existence and uniqueness of an invariant measure of Gibbs type and discuss its properties. We also discuss Markovian approximations and relate them to the approaches currently used in computational neuroscience to analyse experimental spike trains statistics.Comment: 43 pages - revised version - to appear il Journal of Mathematical Biolog
    corecore