114 research outputs found
Effets de la température sur le métabolisme mitochondrial cardiaque
La tempĂ©rature a un effet prononcĂ© sur les rĂ©actions physiologiques. Le mĂ©tabolisme mitochondrial, qui permet de produire de l'Ă©nergie en prĂ©sence d'oxygĂšne (mode aĂ©robie) ne fait pas exception Ă cette rĂšgle. Le muscle cardiaque est hautement dĂ©pendant de la production d'Ă©nergie gĂ©nĂ©rĂ©e par les mitochondries pour accomplir ses fonctions de pompage du sang. Bien qu'en gĂ©nĂ©ral les mammifĂšres rĂ©gulent leur tempĂ©rature corporelle autour de 37 °C, des variations thermiques peuvent se produire en pĂ©riode d'hibernation ou dans certaines situations cliniques (hypothermie induite pour la prĂ©servation d'un organe en vue d'une transplantation ou pour la protection du coeur durant la chirurgie ou hyperthermie lors d'un Ă©pisode de fiĂšvre). Pour comprendre les effets de la tempĂ©rature sur le mĂ©tabolisme mitochondrial, les organismes ectothermes (qui ne rĂ©gulent pas leur tempĂ©rature corporelle) constituent un matĂ©riel biologique privilĂ©giĂ©. Lorsqu'ils font face Ă une chute de tempĂ©rature corporelle, ces espĂšces modifient la composition de leurs membranes cellulaires et mitochondriales. Une augmentation de la proportion des acides gras possĂ©dant des liens insaturĂ©s leur permet de conserver la fluiditĂ© membranaire, malgrĂ© l'effet rigidifiant d'une baisse de tempĂ©rature. Les processus enzymatiques assurant la production d'Ă©nergie aĂ©robie sont en bonne partie de protĂ©ines imbriquĂ©es dans la membrane mitochondriale interne, et donc possiblement affectĂ©s par la fluiditĂ© de cette membrane. L'objectif du Chapitre 1 Ă©tait de dĂ©terminer l'impact d'un changement de composition membranaire sur les fonctions physiologiques ainsi que sur leur thermosensibilitĂ© dans les mitochondries de coeur de rat. Des variations dans la composition des membranes mitochondriales ont pu ĂȘtre induites par une modification du type d' huile (riche en gras saturĂ©s, monoinsaturĂ©s ou polyinsaturĂ©s) et du contenu en antioxydant (probucol) dans l'alimentation. Les diffĂ©rences de composition en acides gras des membranes mitochondriales cardiaques n'ont cependant pas engendrĂ© de diffĂ©rences au niveau de la respiration mitochondriale ou de sa thermosensibilitĂ©. Les rĂ©sultats du Chapitre I ne supportent pas l'hypothĂšse d'un rĂŽle primordial de la composition en acides gras des membranes sur les fonctions des protĂ©ines qui y baignent. La respiration mitochondriale est un processus complexe qui implique diffĂ©rentes rĂ©actions reliĂ©es entre elles. Ces rĂ©actions sont toutes influencĂ©es par la tempĂ©rature mais pas nĂ©cessairement de la mĂȘme façon. Dans le Chapitre II, nous avons dĂ©cortiquĂ© la respiration mitochondriale pour quantifier et comparer les effets de la tempĂ©rature sur ces diffĂ©rentes Ă©tapes. Le but visĂ© Ă©tait d'identifier les sites pour lesquels la tempĂ©rature peut causer une pression sĂ©lective particuliĂšrement forte. Pour rĂ©pondre Ă cette importante question, nous avons proposĂ© une approche comparative en Ă©tudiant une espĂšce de poisson adaptĂ©e Ă des tempĂ©ratures basses (le loup Atlantique, Anarhichas lupus) et une espĂšce qui conserve une tempĂ©rature corporelle constante (le rat). La comparaison de la thermosensibilitĂ© de la respiration mitochondriale et de diffĂ©rentes Ă©tapes impliquĂ©es dans ce processus (Complexes l, II, III et IV du systĂšme de transport des Ă©lectrons, ATPase, citrate synthase et pyruvate dĂ©shydrogĂ©nase) chez ces deux espĂšces a permis de dĂ©montrer clairement qu'une Ă©tape particuliĂšre, la pyruvate dĂ©shydrogĂ©nase, est parfaitement corrĂ©lĂ©e Ă la sensibilitĂ© thermique de la respiration mitochondriale. Cette enzyme n'Ă©tant pas situĂ©e dans la membrane, les rĂ©sultats corroborent ceux obtenus dans le Chapitre I et laissent supposer un contrĂŽle de la respiration mitochondriale par des Ă©tapes situĂ©es avant l'entrĂ©e des Ă©lectrons du systĂšme de transport des Ă©lectrons. L'acquisition de nouvelles connaissances concernant les effets de la tempĂ©rature et de diffĂ©rents substrats Ă©nergĂ©tiques sur le mĂ©tabolisme mitochondrial chez les mammifĂšres est aussi d'une grande importance dans la dĂ©tection des maladies mitochondriales. La plupart des Ă©tudes qui tentent de dĂ©tecter des anomalies du systĂšme respiratoire dans les mitochondries isolĂ©es ou les fibres cardiaques permĂ©abilisĂ©es de mammifĂšres effectuent des mesures entre 20 et 30 °C, mais rarement Ă la tempĂ©rature physiologique (37 °C). Ces Ă©tudes utilisent des substrats Ă©nergĂ©tiques qui sont loin des conditions physiologiques rencontrĂ©es par les mitochondries dans leur environnement cellulaire. De plus, un problĂšme survient rĂ©guliĂšrement pour mettre en relation une mutation gĂ©nĂ©tique affectant l'ADN mitochondrial et la dĂ©tection d'une baisse de production d'Ă©nergie au niveau des mitochondries. Le manque de corrĂ©lation entre les analyses gĂ©nĂ©tiques et la performance physiologique semble liĂ© Ă l'excĂšs apparent de certaines composantes des voies mitochondriales. C'est le cas du Complexe IV du systĂšme de transport des Ă©lectrons. Lorsqu'une maladie survient et qu'elle supprime une partie de l'activitĂ© de ce complexe, la mesure de l'excĂšs d'activitĂ© disponible permet d'Ă©valuer prĂ©cisĂ©ment les implications potentielles de cette anomalie sur la production d'Ă©nergie. L'objectif du Chapitre III Ă©tait de mieux comprendre les effets de la tempĂ©rature et de diffĂ©rents substrats Ă©nergĂ©tiques sur la dĂ©termination d'une anomalie mitochondriale. Contrairement aux deux chapitres prĂ©cĂ©dents qui ont travaillĂ© avec des mitochondries isolĂ©es, dans ce troisiĂšme chapitre, nous avons utilisĂ© des fibres cardiaques permĂ©abilisĂ©es. Cette technique combinĂ©e Ă l'utilisation d'un appareil de mesure permettant une meilleure rĂ©solution, a rendu possible les mesures Ă 5 tempĂ©ratures sur un tissu aussi petit que le ventricule gauche de souris. Les possibilitĂ©s qui s'ouvrent grĂące Ă l'utilisation de cette espĂšce sont grandes puisqu'il existe de nombreux modĂšles de souris gĂ©nĂ©tiquement modifiĂ©es qui facilitent l'Ă©tude des anomalies reliĂ©es aux mitochondries. Les rĂ©sultats dĂ©montrent clairement l'importance de travailler Ă la tempĂ©rature physiologique et d'utiliser des combinaisons de substrats respectant le fonctionnement du systĂšme de transport des Ă©lectrons. Ce projet fournit une importante base conceptuelle pour des analyses futures des fonctions mitochondriales, et ce autant dans un contexte biomĂ©dical que dans l'optique de comprendre l'Ă©volution d'espĂšces dans diffĂ©rents habitats thermiques. ______________________________________________________________________________ MOTS-CLĂS DE LâAUTEUR : CĆur, Rat, Souris, Poisson, Composition membranaire, SensibilitĂ© thermique, SystĂšme de transport des Ă©lectrons, Respiration mitochondriale, Phosphorylation oxydative, Pyruvate dĂ©shydrogĂ©nase, Complexes mitochondriaux, ContrĂŽle de la respiration mitochondriale
Poétique du secret dans la saga d'Aki Shimazaki
Mémoire numérisé par la Direction des bibliothÚques de l'Université de Montréal
The MHC class I peptide repertoire is molded by the transcriptome
Under steady-state conditions, major histocompatibility complex (MHC) I molecules are associated with self-peptides that are collectively referred to as the MHC class I peptide (MIP) repertoire. Very little is known about the genesis and molecular composition of the MIP repertoire. We developed a novel high-throughput mass spectrometry approach that yields an accurate definition of the nature and relative abundance of unlabeled peptides presented by MHC I molecules. We identified 189 and 196 MHC Iâassociated peptides from normal and neoplastic mouse thymocytes, respectively. By integrating our peptidomic data with global profiling of the transcriptome, we reached two conclusions. The MIP repertoire of primary mouse thymocytes is biased toward peptides derived from highly abundant transcripts and is enriched in peptides derived from cyclins/cyclin-dependent kinases and helicases. Furthermore, we found that âŒ25% of MHC Iâassociated peptides were differentially expressed on normal versus neoplastic thymocytes. Approximately half of those peptides are derived from molecules directly implicated in neoplastic transformation (e.g., components of the PI3KâAKTâmTOR pathway). In most cases, overexpression of MHC I peptides on cancer cells entailed posttranscriptional mechanisms. Our results show that high-throughput analysis and sequencing of MHC Iâassociated peptides yields unique insights into the genesis of the MIP repertoire in normal and neoplastic cells
Harnessing Artificial Intelligence for Early and Evolution of Alzheimerâs Disease Detections and Enhancing Senior Mental Health through Innovative Art-Singing Therapies: A Multidisciplinary Approach
The well-documented therapeutic potential of group singing for patients living with Alzheimerâs disease (PLAD) has been hindered by COVID-19 restrictions, exacerbating loneliness and cognitive decline among seniors in residential and long-term care centers (CHSLDs). Addressing this challenge, the multidisciplinary study aims to develop a patient-oriented virtual reality (XR) interaction system facilitating group singing for mental health support during confinement and enhancing the understanding of the links between Alzheimerâs disease, social interaction, and singing. The researchers also propose to establish an early AD detection system using voice, facial, and non-invasive biometric measurements and validate the efficacy of selected intervention practices. The methodology involves co-designing an intelligent environment with caregivers to support PLAD mental health through online group singing, addressing existing constraints in CHSLDs. The researchers will engage volunteers in remote singing interactions and validate the impact of voice stimulation for PLADs using a control group. The primary expected outcome is the development of an âIntelligent Learning Health Environment,â fostering interactions while adapting to individual PLAD situations and incrementally accumulating knowledge on AD signs. This environment will facilitate the transfer of knowledge and technologies to promote non-verbal interactions via singing, enabling intervention at the first symptoms. Additionally, the research will contribute to transforming CHSLDsâ living environments, informed by neuroscience insights, and potentially extend the âcollaborative self-careâ approach to support seniors in aging safely and healthily at home
Tracking and predicting COVID-19 radiological trajectory on chest X-rays using deep learning
Radiological findings on chest X-ray (CXR) have shown to be essential for the proper management of COVID-19 patients as the maximum severity over the course of the disease is closely linked to the outcome. As such, evaluation of future severity from current CXR would be highly desirable. We trained a repurposed deep learning algorithm on the CheXnet open dataset (224,316 chest X-ray images of 65,240 unique patients) to extract features that mapped to radiological labels. We collected CXRs of COVID-19-positive patients from an open-source dataset (COVID-19 image data collection) and from a multi-institutional local ICU dataset. The data was grouped into pairs of sequential CXRs and were categorized into three categories: 'Worse', 'Stable', or 'Improved' on the basis of radiological evolution ascertained from images and reports. Classical machine-learning algorithms were trained on the deep learning extracted features to perform immediate severity evaluation and prediction of future radiological trajectory. Receiver operating characteristic analyses and Mann-Whitney tests were performed. Deep learning predictions between "Worse" and "Improved" outcome categories and for severity stratification were significantly different for three radiological signs and one diagnostic ('Consolidation', 'Lung Lesion', 'Pleural effusion' and 'Pneumonia'; all P < 0.05). Features from the first CXR of each pair could correctly predict the outcome category between 'Worse' and 'Improved' cases with a 0.81 (0.74-0.83 95% CI) AUC in the open-access dataset and with a 0.66 (0.67-0.64 95% CI) AUC in the ICU dataset. Features extracted from the CXR could predict disease severity with a 52.3% accuracy in a 4-way classification. Severity evaluation trained on the COVID-19 image data collection had good out-of-distribution generalization when testing on the local dataset, with 81.6% of intubated ICU patients being classified as critically ill, and the predicted severity was correlated with the clinical outcome with a 0.639 AUC. CXR deep learning features show promise for classifying disease severity and trajectory. Once validated in studies incorporating clinical data and with larger sample sizes, this information may be considered to inform triage decisions
Deep learning of chest Xârays can predict mechanical ventilation outcome in ICUâadmitted COVIDâ19 patients
The COVID-19 pandemic repeatedly overwhelms healthcare systems capacity and forced the development and implementation of triage guidelines in ICU for scarce resources (e.g. mechanical ventilation). These guidelines were often based on known risk factors for COVID-19. It is proposed that image data, specifically bedside computed X-ray (CXR), provide additional predictive information on mortality following mechanical ventilation that can be incorporated in the guidelines. Deep transfer learning was used to extract convolutional features from a systematically collected, multi-institutional dataset of COVID-19 ICU patients. A model predicting outcome of mechanical ventilation (remission or mortality) was trained on the extracted features and compared to a model based on known, aggregated risk factors. The model reached a 0.702 area under the curve (95% CI 0.707-0.694) at predicting mechanical ventilation outcome from pre-intubation CXRs, higher than the risk factor model. Combining imaging data and risk factors increased model performance to 0.743 AUC (95% CI 0.746-0.732). Additionally, a post-hoc analysis showed an increase performance on high-quality than low-quality CXRs, suggesting that using only high-quality images would result in an even stronger model
Altered mitochondrial metabolism in the insulin-resistant heart.
Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.COST Action MitoEAGL
- âŠ