10 research outputs found

    Effect of Ultrashort Pulse Laser Structuring of Stainless Steel on Laser-based Heat Conduction Joining of Polyamide Steel Hybrids

    Get PDF
    AbstractThe objective of this paper is to investigate how microstructures generated by ultrashort pulse laser structuring of stainless steel affect the laser-based joining of thermoplastic metal hybrids. For structuring experiments a picosecond laser (λ = 064 nm) is used. The machined surfaces are topographically analyzed by optical microscopy. The experimental setup for the joining process consists of a disk laser (λ = 1030nm), a scanner optic and a clamping device for lap joint. The joined specimens are mechanically analyzed by tensile shear tests and the influence of ultrashort pulse laser structuring on the mechanical properties of the dissimilar joints is evaluated. Besides, a fracture analysis of the mechanically tested specimens using scanning electron microscope (SEM) images and energy dispersive X-ray spectroscopy (EDX) mapping is done

    Fabrication of a turbid optofluidic phantom device with tunable μa and μ′s to simulate cutaneous vascular perfusion

    No full text
    Microfluidic devices are oftenly used to calibrate the imaging reconstruction, because they simulate the morphology of microvasculature. However, for lack of optical properties in microfluidics, the functional recovery of oximetry information cannot be verified. In this work, we describe the fabrication of a novel turbid optofluidic tissue phantom. It is designed to mimic the vascular perfusion and the turbid nature of cutaneous tissue. This phantom contains an interior hollow microfluidic structure with a diameter of ϕave = 50 μm. The microfluidic structure includes the geometry of an inlet, a river-like assay and an outlet. This structure can be perfused by hemoglobin solution to mimic the cutaneous micro-circulation. The multiple-layered phantom matrices exhibit the representative optical parameters of human skin cutis, namely the absorption coefficient μa and the reduced scattering coefficient . The geometry of the generated microfluidic structure is investigated by using Spectral-Domain Optical Coherence Tomography. This optofluidic phantom bridges the gap between tissue equivalent phantoms and Lab-On-Chip devices. Perspectively, this device can be used to calibrate a variety of optical angiographic imaging approaches

    Adaption of tribological behavior of a-C:H coatings for application in dry deep drawing

    No full text
    Nowadays the sheet metal forming industry faces challenges regarding efficient usage of resources and sustainability. One strategy to increase the environmental friendliness is to abandon the application of lubricants. The direct contact between tool and workpiece leads to an intensive interaction which increases friction. Especially for deep drawing processes with long sliding distances, this causes distinctive wear. The tool sided application of carbon based coatings is a well-known approach to reduce friction and wear. Former studies have shown a beneficial behavior of hydrogenated amorphous carbon based coatings (a-C:H) to improve the tribological conditions in contact with steel sheets and aluminium alloys under dry conditions. Within this study the coating process and the resulting coating properties will be analyzed. Afterwards mechanical and laser based surface treatment processes prior and after the deposition process will be investigated to reduce the coating roughness. Different roughness values were achieved by varying the surface treatment processes. The laser based finishing enables a reduction of the Spk values by removing single roughness asperities. In order to identify the necessary process parameters for the laser treatment, an analytical model of the material removal was applied. The laser surface treatment achieved similar roughness characteristics compared to mechanical treatment. In this study the tribological behavior of a-C:H coated tools was analyzed under dry conditions within strip drawing tests. The tribological investigations revealed that for dry deep drawing of zinc coated DC04 a broader range of Spk values leads to acceptable tribological conditions whereas for AA5182 a smoother tool surface has to be ensured to prevent adhesion and utilize the full potential of a-C:H coatings

    Adaption of tribological behavior of a-C:H coatings for application in dry deep drawing

    No full text
    Nowadays the sheet metal forming industry faces challenges regarding efficient usage of resources and sustainability. One strategy to increase the environmental friendliness is to abandon the application of lubricants. The direct contact between tool and workpiece leads to an intensive interaction which increases friction. Especially for deep drawing processes with long sliding distances, this causes distinctive wear. The tool sided application of carbon based coatings is a well-known approach to reduce friction and wear. Former studies have shown a beneficial behavior of hydrogenated amorphous carbon based coatings (a-C:H) to improve the tribological conditions in contact with steel sheets and aluminium alloys under dry conditions. Within this study the coating process and the resulting coating properties will be analyzed. Afterwards mechanical and laser based surface treatment processes prior and after the deposition process will be investigated to reduce the coating roughness. Different roughness values were achieved by varying the surface treatment processes. The laser based finishing enables a reduction of the Spk values by removing single roughness asperities. In order to identify the necessary process parameters for the laser treatment, an analytical model of the material removal was applied. The laser surface treatment achieved similar roughness characteristics compared to mechanical treatment. In this study the tribological behavior of a-C:H coated tools was analyzed under dry conditions within strip drawing tests. The tribological investigations revealed that for dry deep drawing of zinc coated DC04 a broader range of Spk values leads to acceptable tribological conditions whereas for AA5182 a smoother tool surface has to be ensured to prevent adhesion and utilize the full potential of a-C:H coatings

    Ultrashort Pulsed Laser Drilling of Printed Circuit Board Materials

    No full text
    We report on a comprehensive study of laser percussion microvia drilling of FR-4 printed circuit board material using ultrashort pulse lasers with emission in the green spectral region. Laser pulse durations in the pico- and femtosecond regime, laser pulse repetition rates up to 400 kHz and laser fluences up to 11.5 J/cm2 are applied to optimize the quality of microvias, as being evaluated by the generated taper, the extension of glass fiber protrusions and damage of inner lying copper layers using materialography. The results are discussed in terms of the ablation threshold for FR-4 and copper, heat accumulation and pulse shielding effects as a result of pulse to pulse interactions. As a specific result, using a laser pulse duration of 2 ps appears beneficial, resulting in small glass fiber protrusions and high precision in the stopping process at inner copper layer. If laser pulse repetition rates larger than 100 kHz are applied, we find that the processing quality can be increased by heat accumulation effects

    Lubricant free forming with tailored tribological conditions

    No full text
    AbschlussberichtChanged ecological and economic situations motivate research into environmentally friendly and efficient manufacturing processes. Forming without lubricant has the potential to meet both requirements by avoiding the usage of environmentally harmful lubricants and shortening the process chain by omitting lubricant application and component cleaning. Within the scope of the project, an increase in friction and adhesive wear were identified as major challenges, resulting in failure of components due to cracking. Therefore, this project focused on the investigation of measures to meet these challenges. Amorphous carbon coatings, the reduction of roughness and the application of discrete microtextures were considered as potential measures. Hydrogen-containing amorphous carbon coating systems (a-C:H) fabricated by reactive physical vapor deposition (PVD), plasma-enhanced chemical vapor deposition (PECVD) and PVD/PECVD hybrid techniques, as well as a PVD-generated tetrahedral hydrogen-free amorphous carbon coating (ta-C) were investigated with respect to their properties and tribological performance Three specific profile requirements –a dopant free carbon network, smooth and defect-free surfaces and a high coating adhesion to substrate –are identified as requirements, in order to prolonger the service life of the coated tools. Moreover, to enable the steering of the material flow ultrafast laser based micro texturing for locally tailored tribological conditions were investigated. Thereby two wavelength dependent ablation regimes which differ in ablation mechanism and freedom of form were identified. Using these approaches the friction coefficient could either be reduced by up to 20 % or selectively increased. To improve the efficiency of the process, several beam shaping approaches were evaluated to provide a homogeneous beam profile for uniform modification. By applying ta-C and a-C:H coatings in forming tests, the findings of the laboratory tests were validated and the feasibility of lubricant free deep drawing was proven. In order to benefit from the forming-process-specific advantages, high quantities and therefore high durability of the measures are required. An application-oriented wear test rig has been designed to investigate their durability. By this, it was proven that 3 000 components can be produced from DC04 without wear with both a-C:H and ta-C coatings, and thus increasing tool life by a factor of 15 compared to unmodified tools. Even in the case of wear-critical AA5182, 3 000 parts were produced without wear using ta-C. Within the scope of the project, a fundamental understanding of lubricant free deep drawing processes and measures was created and proof of feasibility in form of a high number of components was achieved.22826

    The ATLAS project - XII : Recovery of the mass-to-light ratio of simulated early-type barred galaxies with axisymmetric dynamical models

    Get PDF
    We investigate the accuracy in the recovery of the stellar dynamics of barred galaxies when using axisymmetric dynamical models. We do this by trying to recover the mass-to-light ratio (M/L) and the anisotropy of realistic galaxy simulations using the Jeans Anisotropic Multi-Gaussian Expansion (JAM) modelling method. However, given that the biases we find are mostly due to an application of an axisymmetric modelling algorithm to a non-axisymmetric system and in particular to inaccuracies in the deprojected mass model, our results are relevant for general axisymmetric modelling methods. We run N-body collisionless simulations to build a library with various luminosity distribution, constructed to mimic real individual galaxies, with realistic anisotropy. The final result of our evolved library of simulations contains both barred and unbarred galaxies. The JAM method assumes an axisymmetric mass distribution, and we adopt a spatially constant M/L and anisotropy distributions. The models are fitted to two-dimensional maps of the second velocity moments of the simulations for various viewing angles [position angle (PA) of the bar and inclination of the galaxy]. We find that the inclination is generally well recovered by the JAM models, for both barred and unbarred simulations. For unbarred simulations the M/L is also accurately recovered, with negligible median bias and with a maximum one of just ?(M/L) < 1.5 per cent when the galaxy is not too close to face on. At very low inclinations () the M/L can be significantly overestimated (9 per cent in our tests, but errors can be larger for very face-on views). This is in agreement with previous studies. For barred simulations the M/L is on average (when PA = 45 degrees) essentially unbiased, but we measure an over/underestimation of up to ?(M/L) = 15 per cent in our tests. The sign of the M/L bias depends on the PA of the bar as expected: overestimation occurs when the bar is closer to end-on, due to the increased stellar motion along the line-of-sight, and underestimation otherwise. For unbarred simulations, the JAM models are able to recover the mean value of the anisotropy with bias , within the region constrained by the kinematics. However when a bar is present, or for nearly face-on models, the recovered anisotropy varies wildly, with biases up to ?beta z similar to 0.3.Peer reviewe

    Fast fabrication of polymer out-of-plane optical coupler by gray-scale lithography

    No full text
    We report a fabrication process of a polymer, and mirror-based out-of-plane optical coupler. In the process, a pre-formed mirror blank made of a buffer coat material is re-exposed by a laser direct writing tool with low numerical aperture of 0.1. The fabrication process is inherently fast because of the low numerical aperture (NA) process. The surface figure of the mirror is controlled under 0.04 waves in root-mean-square (RMS) at 1.55 mu m wavelength, with mirror angle of 45 +/- 1 degrees. Nominal insertion loss of 8.5dB of the mirror-based coupler was confirmed with polymer waveguides fabricated simultaneously. (C) 2017 Optical Society of AmericaIntel Corp.Open Access Journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement

    No full text
    This ESGE Position Statement defines the expected value of artificial intelligence (AI) for the diagnosis and management of gastrointestinal neoplasia within the framework of the performance measures already defined by ESGE. This is based on the clinical relevance of the expected task and the preliminary evidence regarding artificial intelligence in artificial or clinical settings. Main recommendations: (1) For acceptance of AI in assessment of completeness of upper GI endoscopy, the adequate level of mucosal inspection with AI should be comparable to that assessed by experienced endoscopists. (2) For acceptance of AI in assessment of completeness of upper GI endoscopy, automated recognition and photodocumentation of relevant anatomical landmarks should be obtained in &gt;= 90% of the procedures. (3) For acceptance of AI in the detection of Barrett's high grade intraepithelial neoplasia or cancer, the AI-assisted detection rate for suspicious lesions for targeted biopsies should be comparable to that of experienced endoscopists with or without advanced imaging techniques. (4) For acceptance of AI in the management of Barrett's neoplasia, AI-assisted selection of lesions amenable to endoscopic resection should be comparable to that of experienced endoscopists. (5) For acceptance of AI in the diagnosis of gastric precancerous conditions, AI-assisted diagnosis of atrophy and intestinal metaplasia should be comparable to that provided by the established biopsy protocol, including the estimation of extent, and consequent allocation to the correct endoscopic surveillance interval. (6) For acceptance of artificial intelligence for automated lesion detection in small-bowel capsule endoscopy (SBCE), the performance of AI-assisted reading should be comparable to that of experienced endoscopists for lesion detection, without increasing but possibly reducing the reading time of the operator. (7) For acceptance of AI in the detection of colorectal polyps, the AI-assisted adenoma detection rate should be comparable to that of experienced endoscopists. (8) For acceptance of AI optical diagnosis (computer-aided diagnosis [CADx]) of diminutive polyps (&lt;= 5 mm), AI-assisted characterization should match performance standards for implementing resect-and-discard and diagnose-and-leave strategies. (9) For acceptance of AI in the management of polyps &gt;= 6 mm, AI-assisted characterization should be comparable to that of experienced endoscopists in selecting lesions amenable to endoscopic resection
    corecore