550 research outputs found

    Size of the Vela Pulsar's Emission Region at 18 cm Wavelength

    Full text link
    We present measurements of the linear diameter of the emission region of the Vela pulsar at observing wavelength lambda=18 cm. We infer the diameter as a function of pulse phase from the distribution of visibility on the Mopra-Tidbinbilla baseline. As we demonstrate, in the presence of strong scintillation, finite size of the emission region produces a characteristic W-shaped signature in the projection of the visibility distribution onto the real axis. This modification involves heightened probability density near the mean amplitude, decreased probability to either side, and a return to the zero-size distribution beyond. We observe this signature with high statistical significance, as compared with the best-fitting zero-size model, in many regions of pulse phase. We find that the equivalent full width at half maximum of the pulsar's emission region decreases from more than 400 km early in the pulse to near zero at the peak of the pulse, and then increases again to approximately 800 km near the trailing edge. We discuss possible systematic effects, and compare our work with previous results

    Recurrences in Driven Quantum Systems

    Full text link
    We consider an initially bound quantum particle subject to an external time-dependent field. When the external field is large, the particle shows a tendency to repeatedly return to its initial state, irrespective of whether the frequency of the field is sufficient for escape from the well. These recurrences, which are absent in a classical calculation, arise from the system evolving primarily like a free particle in the external field.Comment: 10 pages in RevTeX format, with three PS files appende

    Noise in the Cross-Power Spectrum of the Vela Pulsar

    Get PDF
    We compare the noise in interferometric measurements of the Vela pulsar from ground- and space-based antennas with theoretical predictions. The noise depends on both the flux density and the interferometric phase of the source. Because the Vela pulsar is bright and scintillating, these comparisons extend into both the low and high signal-to-noise regimes. Furthermore, our diversity of baselines explores the full range of variation in interferometric phase. We find excellent agreement between theoretical expectations and our estimates of noise among samples within the characteristic scintillation scales. Namely, the noise is drawn from an elliptical Gaussian distribution in the complex plane, centered on the signal. The major axis, aligned with the signal phase, varies quadratically with the signal, while the minor axis, at quadrature, varies with the same linear coefficients. For weak signal, the noise approaches a circular Gaussian distribution. Both the variance and covariance of the noise are also affected by artifacts of digitization and correlation. In particular, we show that gating introduces correlations between nearby spectral channels

    Size of the Vela Pulsar's Emission Region at 13 cm Wavelength

    Get PDF
    We present measurements of the size of the Vela pulsar in 3 gates across the pulse, from observations of the distribution of intensity. We calculate the effects on this distribution of noise in the observing system, and measure and remove it using observations of a strong continuum source. We also calculate and remove the expected effects of averaging in time and frequency. We find that effects of variations in pulsar flux density and instrumental gain, self-noise, and one-bit digitization are undetectably small. Effects of normalization of the correlation are detectable, but do not affect the fitted size. The size of the pulsar declines from 440 +/- 90 km (FWHM of best-fitting Gaussian distribution) to less than 200 km across the pulse. We discuss implications of this size for theories of pulsar emission.Comment: 51 pages, 10 figures. To appear in ApJ. Also available at http://www.physics.ucsb.edu/~cgwinn/pulsar/size_14.p

    Universal criterion for the breakup of invariant tori in dissipative systems

    Full text link
    The transition from quasiperiodicity to chaos is studied in a two-dimensional dissipative map with the inverse golden mean rotation number. On the basis of a decimation scheme, it is argued that the (minimal) slope of the critical iterated circle map is proportional to the effective Jacobian determinant. Approaching the zero-Jacobian-determinant limit, the factor of proportion becomes a universal constant. Numerical investigation on the dissipative standard map suggests that this universal number could become observable in experiments. The decimation technique introduced in this paper is readily applicable also to the discrete quasiperiodic Schrodinger equation.Comment: 13 page

    PSR B0329+54: Statistics of Substructure Discovered within the Scattering Disk on RadioAstron Baselines of up to 235,000 km

    Full text link
    We discovered fine-scale structure within the scattering disk of PSR B0329+54 in observations with the RadioAstron ground-space radio interferometer. Here, we describe this phenomenon, characterize it with averages and correlation functions, and interpret it as the result of decorrelation of the impulse-response function of interstellar scattering between the widely-separated antennas. This instrument included the 10-m Space Radio Telescope, the 110-m Green Bank Telescope, the 14x25-m Westerbork Synthesis Radio Telescope, and the 64-m Kalyazin Radio Telescope. The observations were performed at 324 MHz, on baselines of up to 235,000 km in November 2012 and January 2014. In the delay domain, on long baselines the interferometric visibility consists of many discrete spikes within a limited range of delays. On short baselines it consists of a sharp spike surrounded by lower spikes. The average envelope of correlations of the visibility function show two exponential scales, with characteristic delays of τ1=4.1±0.3 μs\tau_1=4.1\pm 0.3\ \mu{\rm s} and τ2=23±3 μs\tau_2=23\pm 3\ \mu{\rm s}, indicating the presence of two scales of scattering in the interstellar medium. These two scales are present in the pulse-broadening function. The longer scale contains 0.38 times the scattered power of the shorter one. We suggest that the longer tail arises from highly-scattered paths, possibly from anisotropic scattering or from substructure at large angles.Comment: 15 pages, 6 figures, 3 tables; accepted by Astrophysical journa

    Astrometric and Timing Effects of Gravitational Waves from Localized Sources

    Get PDF
    A consistent approach for an exhaustive solution of the problem of propagation of light rays in the field of gravitational waves emitted by a localized source of gravitational radiation is developed in the first post-Minkowskian and quadrupole approximation of General Relativity. We demonstrate that the equations of light propagation in the retarded gravitational field of an arbitrary localized source emitting quadrupolar gravitational waves can be integrated exactly. The influence of the gravitational field on the light propagation is examined not only in the wave zone but also in cases when light passes through the intermediate and near zones of the source. Explicit analytic expressions for light deflection and integrated time delay (Shapiro effect) are obtained accounting for all possible retardation effects and arbitrary relative locations of the source of gravitational waves, that of light rays, and the observer. It is shown that the ADM and harmonic gauge conditions can both be satisfied simultaneously outside the source of gravitational waves. Their use drastically simplifies the integration of light propagation equations and those for the motion of light source and observer in the field of the source of gravitational waves, leading to the unique interpretation of observable effects. The two limiting cases of small and large values of impact parameter are elaborated in more detail. Explicit expressions for Shapiro effect and deflection angle are obtained in terms of the transverse-traceless part of the space-space components of the metric tensor. We also discuss the relevance of the developed formalism for interpretation of radio interferometric and timing observations, as well as for data processing algorithms for future gravitational wave detectors.Comment: 43 pages, 4 Postscript figures, uses revtex.sty, accepted to Phys. Rev. D, minor corrections in formulae regarding algebraic sign

    Exploring morphological correlations among H2CO, 12CO, MSX and continuum mappings

    Full text link
    There are relatively few H2CO mappings of large-area giant molecular cloud (GMCs). H2CO absorption lines are good tracers for low-temperature molecular clouds towards star formation regions. Thus, the aim of the study was to identify H2CO distributions in ambient molecular clouds. We investigated morphologic relations among 6-cm continuum brightness temperature (CBT) data and H2CO (111-110; Nanshan 25-m radio telescope), 12CO (1--0; 1.2-m CfA telescope) and midcourse space experiment (MSX) data, and considered the impact of background components on foreground clouds. We report simultaneous 6-cm H2CO absorption lines and H110\alpha radio recombination line observations and give several large-area mappings at 4.8 GHz toward W49 (50'\times50'), W3 (70'\times90'), DR21/W75 (60'\times90') and NGC2024/NGC2023 (50'\times100') GMCs. By superimposing H2CO and 12CO contours onto the MSX color map, we can compare correlations. The resolution for H2CO, 12CO and MSX data was about 10', 8' and 18.3", respectively. Comparison of H2CO and 12CO contours, 8.28-\mu m MSX colorscale and CBT data revealed great morphological correlation in the large area, although there are some discrepancies between 12CO and H2CO peaks in small areas. The NGC2024/NGC2023 GMC is a large area of HII regions with a high CBT, but a H2CO cloud to the north is possible against the cosmic microwave background. A statistical diagram shows that 85.21% of H2CO absorption lines are distributed in the intensity range from -1.0 to 0 Jy and the \Delta V range from 1.206 to 5 km/s.Comment: 18 pages, 22 figures, 5 tables. Accepted to be published in Astrophysics and Space Scienc

    Dense molecular gas toward W49A: A template for extragalactic starbursts?

    Get PDF
    The HCN, HCO+, and HNC molecules are commonly used as tracers of dense star-forming gas in external galaxies, but such observations are spatially unresolved. Reliably inferring the properties of galactic nuclei and disks requires detailed studies of sources whose structure is spatially resolved. We compare the spatial distributions and abundance ratios of HCN, HCO+, and HNC in W49A, the most massive and luminous star-forming region in the Galactic disk, based on maps of a 2' (6.6 pc) field at 14" (0.83 pc) resolution of the J=4-3 transitions of HCN, H13CN, HC15N, HCO+, H13CO+, HC18O+ and HNC. The kinematics of the molecular gas in W49A appears complex, with a mixture of infall and outflow motions. Both the line profiles and comparison of the main and rarer species show that the main species are optically thick. Two 'clumps' of infalling gas appear to be at ~40 K, compared to ~100 K at the source centre, and may be ~10x denser than the rest of the outer cloud. Chemical modelling suggests that the HCN/HNC ratio probes the current gas temperature, while the HCN/HCO+ ratio and the deuterium fractionation were set during an earlier, colder phase of evolution. The data suggest that W49A is an appropriate analogue of an extragalactic star forming region. Our data show that the use of HCN/HNC/HCO+ line ratios as proxies for the abundance ratios is incorrect for W49A, suggesting the same for galactic nuclei. Our observed isotopic line ratios such as H13CN/H13CO+ approach our modeled abundance ratios quite well in W49A. The 4-3 lines of HCN and HCO+ are much better tracers of the dense star-forming gas in W49A than the 1-0 lines. Our observed HCN/HNC and HCN/HCO+ ratios in W49A are inconsistent with homogeneous PDR or XDR models, indicating that irradiation hardly affects the gas chemistry in W49A. Overall, the W49A region appears to be a useful template for starburst galaxies.Comment: Accepted by A&A; 17 pages, 15 figure
    • …
    corecore