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ABSTRACT

We compare the noise in interferometric measurements of the Vela pulsar from ground- and space-based antennas
with theoretical predictions. The noise depends on both the flux density and the interferometric phase of the
source. Because the Vela pulsar is bright and scintillating, these comparisons extend into both the low and high
signal-to-noise regimes. Furthermore, our diversity of baselines explores the full range of variation in interferometric
phase. We find excellent agreement between theoretical expectations and our estimates of noise among samples
within the characteristic scintillation scales. Namely, the noise is drawn from an elliptical Gaussian distribution in
the complex plane, centered on the signal. The major axis, aligned with the signal phase, varies quadratically with
the signal, while the minor axis, at quadrature, varies with the same linear coefficients. For weak signal, the noise
approaches a circular Gaussian distribution. Both the variance and covariance of the noise are also affected by
artifacts of digitization and correlation. In particular, we show that gating introduces correlations between nearby
spectral channels.

Key words: methods: statistical – pulsars: individual: Vela pulsar – radio continuum: stars – techniques:
interferometric

1. INTRODUCTION

Radio astronomical observations yield a deterministic part,
the signal, and a random part, noise (Thompson et al. 1986).
Consequently, the signal-to-noise ratio (S/N), the magnitude of
the deterministic part divided by the standard deviation of the
random part, characterizes them. An understanding of the noise
is fundamentally important because it provides a measure of the
possibility of detecting a weak signal, and of the reliability of
the measurements of a detected signal. The noise is particularly
important in situations where the signal varies, because the noise
can mimic the signal.

Noise includes background noise from the instrument and
sky. However, because all radio astronomical signals are
noiselike (with one possible exception: Jenet et al. 2001; Smits
et al. 2003), they also contribute self-noise (Kulkarni 1989;
Anantharamaiah et al. 1991; Vivekanand & Kulkarni 1991;
McCullough 1993; Gwinn 2006; Gwinn & Johnson 2011). As
argued previously (Gwinn 2006; Gwinn & Johnson 2011) and
in Section 2.2 below, for interferometric visibility, the variance
of the noise increases quadratically with the signal in phase with
the signal, and linearly with the signal at quadrature to the sig-
nal. The constant and linear coefficients in these two directions
are equal.

We tested this picture for the cross-power spectrum of a scin-
tillating source—the Vela pulsar. These observations provided
an ideal laboratory for such studies because the pulsar varies
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greatly in flux density and interferometric phase with frequency
and time, because of interstellar scintillation (Desai et al. 1992).
Thus, each spectrum spanned many scintillation elements.
Furthermore, the S/N of the strongest spectral peaks can be
high, even for short integrations, and the source contributes sig-
nificantly to system temperature, so that self-noise is important.

We compared predictions with observational estimates,
formed by differencing samples close together in time and bin-
ning them according to their estimated average visibility. This
procedure provides for convenient visualization of the noise dis-
tribution. Our investigation extends our previous results (Gwinn
et al. 2011) to the regime of high S/N and large interferometric
phase variations. Because of pulsar gating, the number of sam-
ples per integration time was small and depended on the number
of gated pulses within the integration time. From correlation
functions, we determined the covariances of noise among spec-
tral channels. Such covariances can be produced by quantization
and by correlator effects. We discuss these effects and compare
results with observations.

1.1. Organization of This Paper

Because the noise in the spectrum is drawn from a nearly
Gaussian distribution with zero mean, variances and covari-
ances characterize it. In Section 2, we introduce the theoretical
basis for noise in interferometric visibility and present the math-
ematical descriptions used in the paper. In Section 3, we discuss
our observations, correlation, and initial data processing. The
remainder of the paper analyzes the noise in these observations.
In Section 4, we quantify the distribution of noise and the in-
fluence of a signal. In Section 5, we discuss quantization and
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correlator effects. In Section 6, we summarize our results and
discuss implications for future observations and instruments.

2. THEORETICAL BACKGROUND AND NOTATION

2.1. Correlation Functions and Spectra

Observations of electromagnetic radiation from astronomical
sources measure and compare finite samples of electromag-
netic fields. We suppose that these are drawn from ensembles
of statistically identical measurements. Noise is the difference
between the result of a measurement and the average of an in-
finite ensemble of such measurements. The measurements, as
well as their statistical averages, can be expressed either as spec-
tra, varying with frequency, or as correlation functions, varying
with lag in the Fourier-conjugate domain. In practice, the sam-
ples are digitized, quantized, and time sampled. We introduce
conventions for notation that help distinguish among these var-
ious domains. The tilde denotes entities in the spectral domain,
indexed by the spectral channel as a subscript, for example, r̃k .
Unaccented symbols designate the Fourier-conjugate domain
of the correlation function, indexed by lag: rτ . Angular brack-
ets 〈...〉n denote a statistical average over many realizations of
the noiselike electric field, with the scintillation spectrum held
fixed. The subscripted brackets 〈...〉S denote an average over
many samples of the scintillation spectrum. These conventions
are consistent with earlier work (Gwinn 2004; Gwinn & Johnson
2011).

As in earlier studies, we suppose that two antennas record
time series of zero-mean, complex Gaussian random variables
(Gwinn 2004, 2006; Gwinn & Johnson 2011; Gwinn et al.
2011). These time series can be regarded as the amplitude
and phase of one polarization of electric field. The antennas
are X and Y, and the time series x� and y�, where � indices
time. The ensemble-averaged cross-power spectrum ρ̃k and
the ensemble-averaged autocorrelation spectrum α̃k fully de-
scribe the spectral properties of these series. At shorter wave-
lengths quantum-mechanical effects introduce shot noise, but
the ensemble-averaged spectrum remains the same (Zmuidzinas
2003). For convenience, we assume unit variances for the real
and imaginary parts.

An observer forms the cross-correlation function, rτ , of the
time series x� and y�. The Fourier transform of rτ gives the
observed cross-power spectrum, r̃k . This observed spectrum is
an estimate of ρ̃k , multiplied by a correlator-dependent gain
factor (see Section 5). Similarly, autocorrelation of data at a
single antenna yields an autocorrelation spectrum ãk , an estimate
of α̃k . The autocorrelation spectrum may include an offset, from
the correlation of spectrally flat background noise, as well as a
gain factor. In practice, individual measurements r̃k differ from
the “true” spectrum ρ̃k by a random amount: the noise. If many
samples of r̃k are averaged together, the noise for the average
approaches a Gaussian distribution.

At lag τ , the cross-correlation function rτ is

rτ = 1

Nobs − |τ |
Nobs−|τ |∑

�=1

x�y
∗
�+τ . (1)

This equation parallels Equation (6) of Gwinn (2004); in
particular, Nobs is the number of samples. However, we have
reduced the definition of rτ by a factor of two, by changing
the normalization of x� and y� so that 〈|x�|2〉 = 〈|y�|2〉 = 1.
Note that the sum here runs from 1 only to Nobs − |τ |, so that

large lags are averaged over fewer samples. If the lag τ < 0,
then the sum runs from |τ | + 1 to Nobs. The finite spans of the
time series prevent the correlation of all samples: for τ > 0,
no y�+τ exists for the last τ samples of x�. For τ < 0, no
x� exists for the first |τ | samples of y�+τ . A pulsar gate, for
example, can truncate the time series in this way. Equation (1)
describes the calculation of rτ in many correlators of the “XF”
design, where correlation “X” precedes Fourier transform “F.”
The S2 correlator at Penticton, used for the work described
here, is of this design. In contrast, our previous theoretical work
assumed averaging of all lags τ over Nobs elements, because
of the identification x�−Nobs ≡ x� for any � (Gwinn 2006;
Gwinn & Johnson 2011). We call this the “wrap” assumption.
Most correlators of the alternative “FX” design, where Fourier
transform precedes correlation, obey the “wrap” assumption.
However, by zero padding the time series they can emulate the
sum in Equation (1). We discuss the consequences of these two
formulations for the cross-power spectrum in Section 5.2 below.

The statistical average of the cross-correlation function rτ is
〈rτ 〉n = ρτ . This average runs over many realizations of the
electric field, with uniform statistics. Our observations are not
stationary and do not approximate an ensemble average because
both the scintillation spectrum and the intrinsic flux density
of the pulsar change with time. However, we can regard each
observation as being drawn from an ensemble of observations
of statistically identical pulses at the same pulse phase and in
the same scintillation state (see Gwinn et al. 2011).

The observed cross-power spectrum is the Fourier transform
of the cross-correlation function:

r̃k =
N−1∑

τ=−N

ei 2π
2N

kτ rτ , (2)

where the number of spectral channels is 2N . The statistical
average of r̃k is 〈r̃k〉n = ρ̃k . For autocorrelation, the average
over x�x

∗
�+τ analogous to Equation (1) forms the autocorrelation

function aτ . A statistical average of aτ yields 〈aτ 〉n = ατ .
The Fourier transform analogous to Equation (2) yields the
autocorrelation spectrum ãk , and an average over a statistical
ensemble yields 〈ãk〉n = α̃k .

2.2. Noise Distribution for Visibility

Noise in the cross-power spectrum is the difference of an ob-
servation and the ensemble average: r̃k − 〈r̃k〉n. Typically, the
observed spectrum is an average over a number of individually
formed spectra, as described by Equations (1) and (2). Con-
sequently, the Central Limit theorem suggests that the noise
follows a Gaussian distribution. Because the cross-correlation
function is complex, this distribution is an elliptical Gaussian
distribution in the complex plane.

When the signal is completely absent, as when the pulsar is
off, one expects that ρ̃k = 0 and that r̃k consists of noise drawn
from a zero-mean, circular complex Gaussian distribution. Our
observations match this expectation closely, as we discuss in
Section 5.1.

If the signal is present, then the Dicke equation describes
the contribution of self-noise. This equation states that the error
δT in measurements of antenna temperature varies with total
system temperature T, including the contribution of the source
(Dicke 1946):

(δT )2 = T 2

Nobs
. (3)
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Here, Nobs = Δν × Δt is the number of samples, for an
observed bandwidth Δν and integration time Δt . The analo-
gous expression holds for interferometric visibility (Thompson
et al. 1986). More generally, this equation describes the
noise in the sample variance for draws from a Gaussian
distribution.

The real and imaginary parts of statistical averages of r̃k

suffice to estimate both the signal and the noise (Gwinn 2006,
Equations (11), (18), and (19)):

〈r̃k〉n = ρ̃k

δr̃k δr̃∗
k ≡ 〈r̃k r̃

∗
k 〉n − 〈r̃k〉n〈r̃∗

k 〉n = 1

Nobs
α̃Xkα̃Yk

δr̃k δr̃k ≡ 〈r̃k r̃k〉n − 〈r̃k〉n〈r̃k〉n = 1

Nobs
ρ̃kρ̃k. (4)

Again, Nobs is the number of samples gathered, per spectral
channel. The subscripted angular brackets 〈...〉n indicate an av-
erage over many realizations of noise. As the first expression
indicates, ρ̃k is the cross-power spectrum, averaged over an
ensemble of statistically identical realizations of noise. Analo-
gously, α̃Xk is the autocorrelation function at station X, and α̃Yk

is the autocorrelation function at Y. We assume single-sideband
operation. Here we also apply the “wrap” assumption, discussed
in Sections 2.1 and 5.2.3. The autocorrelation spectra are always
real and are often identical between stations after calibration,
with offsets for background noise. For a scintillating source
observed on a long baseline, the spectra need not be identical,
because the stations may lie in different scintillation elements
in the observer plane.

To help visualize the distribution of noise in Equation (4), we
divide the noise into components parallel with and perpendicular
to the phase of the average visibility. The expression for noise
then takes the form

ρ̃ = |ρ̃|eiφ

σ 2
|| = 1

2Nobs
(|α̃X||α̃Y | + |ρ̃|2)

σ 2
⊥ = 1

2Nobs
(|α̃X||α̃Y | − |ρ̃|2). (5)

Here, φ is the phase of the average visibility. We have omitted
the subscript k for clarity. For most interferometric observations,
the intensity of the source is constant over the observer plane:
α̃X = α̃Y . The difference between σ|| and σ⊥ then produces an
elliptical distribution of noise, with major axis aligned with
the average phase φ. Usually, background noise contributes
a constant offset to α, and the source contributes the rest.
This form is quite general: it holds for any interferometric
observations of a noiselike source, not just observations of a
scintillating pulsar.

2.3. Noise for a Scintillating Source

2.3.1. Distribution of Noise

A strong, scintillating source provides a good laboratory for
the study of self-noise because it provides many independent
observations of visibility, with different flux densities and (if
the baseline is long) phases, under identical conditions. For
a scintillating, pointlike source, with flux densities IX and IY
at stations X and Y, and background noise equivalent to flux
densities nX and nY , the signal and noise are (Gwinn et al. 2011,

Equations (5)–(7))

ρ̃ =
√

IXIY eiφs

σ 2
|| = 1

Nobs

{
nXnY

2
+

1

2
(nY IX + nXIY ) + IXIY

}

σ 2
⊥ = 1

Nobs

{
nXnY

2
+

1

2
(nY IX + nXIY )

}
. (6)

The visibility phase, φs, arises from phase differences between
the pair of scintillation elements in the observer plane. The
variance of measurements of r̃ at that phase is σ 2

|| ; the variance
at quadrature is σ 2

⊥. The subscript for channel k is omitted;
all quantities are for one spectral channel. Note that in this
expression, the autocorrelation spectra at the two antennas
α̃Xk, α̃Yk differ both because the intensity of the source at the
two antennas may differ (IX �= IY ) and because of different
noise at the two antennas (nX �= nY ).

2.3.2. Short-baseline Limit

For a short baseline, both antennas will lie within the same
scintillation element. In this case, φs → 0, and IA = IB ≡ I .
However, the variance of the noise at the two antennas may still
be different. We can then express the distribution of noise in the
form (Gwinn et al. 2011, Equation (8))

σ 2
|| = b0 + b1I + b2I

2

σ 2
⊥ = b0 + b1I

I ≡ |ρ̃|. (7)

In this expression, b2 = 1/Nobs. This expression holds even
if the source is mildly resolved by the scattering disk, because
the normalized, ensemble-averaged visibility remains nearly 1
(Gwinn 2001).

2.3.3. Long-baseline Effects

If the baseline is long compared with the scale of the
scintillation pattern in the observer plane, then the scintillations
differ at the two stations. Thus, IX �= IY . Nonetheless, inspection
shows that the constant term, b0, and the quadratic term, b2,
in Equation (7) still describe the behavior of noise correctly.
The linear term, b1, does not. However, it converges to the
same form in an average over many scintillation elements
with the same visibility ρ̃, for a point source. This is seen
by extending the calculation of visibility in Gwinn (2001) to
include the intensities at the two antennas, most easily by
numerical calculation. However, this average over realizations
of scintillations converges much more slowly than the average
over realizations of the noise.

If the baseline is long and the source is resolved by the
scattering disk, then |ρ̃|2 < α̃Xα̃Y , so that |〈r̃〉n|2 < IXIY .
Consequently, σ⊥ will acquire some of the quadratic behavior
of σ|| in Equation (6). For a small source size, the effect is
second order in the size parameter and will become apparent
only when the distribution of visibility is already significantly
distorted (Gwinn 2001).

2.3.4. Effects of Variability, Quantization, and Correlation

The flux densities of pulsars in general, and the Vela pulsar
in particular, vary intrinsically from one pulse to the next and
within pulses (Krishnamohan & Downs 1983; Johnston et al.
2001; Kramer et al. 2002). Variations on timescales shorter
than the time to accumulate one sample of the spectrum, the
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“accumulation time,” lead to correlations of noise between
spectral channels and increase the source noise contribution to
σ 2

|| (Gwinn & Johnson 2011). If we parameterize these variations
by δI/I , with 〈δI 〉 = 0, then the quadratic coefficient, b2, in
Equation (7) becomes

b2 =
(

δI

I

)2

+
1

Nobs
. (8)

The other coefficients, b0 and b1, are unchanged. This calcula-
tion follows Section 3.3.2 of Gwinn & Johnson (2011), but with
β − 1 = δI/I averaging to zero over the suite of observations
rather than over the accumulation time for a single spectrum.

Digitization, or more precisely quantization during digitiza-
tion, also affects the noise. If the correlation is not extremely
strong, ρ < 0.5, and if the data are viewed in the spectral do-
main, then the effects of quantization can be represented as a
change in gain and a spectrally constant offset. This offset is
often termed “digitization noise” and contributes to the values
of b0 and b1, as one would expect. The expressions for noise
take the same forms as in Equations (4)–(6) above, but with
corrections to station gains and noise levels (see Equations (56)
and (57) of Gwinn 2006).

Correlations among spectral channels also characterize noise.
For sources of constant intensity, noise is uncorrelated between
spectral channels, under the “wrap” approximation (Gwinn
2006). Relaxation of that assumption can lead to an observable
correlation of noise between channels, as we discuss further
in Section 5.2.3. Variation of flux density within the accumu-
lation time for a single spectrum can also lead to significant
correlations of noise (Gwinn & Johnson 2011).

3. OBSERVATIONS, CORRELATION, AND CALIBRATION

We observed the Vela pulsar on 1997 December 10 using a
network comprising antennas at Tidbinbilla (70 m diameter),
Mopra (22 m), Hartebeesthoek (26 m), and the VSOP space-
craft (8 m). The observations began at 14:15 UT and ended at
22:40 UT, for a time span of 8:25. The observing wavelength
was 18 cm. We observed left-circular polarized radiation. We
recorded two 16 MHz frequency bands (IFs) at each antenna,
both as upper sidebands. The bands spanned 1634–1650 MHz
(IF1) and 1650–1666 MHz (IF2). The data were digitized
(quantized and sampled) at recording time, thereby characteriz-
ing the electric field with a sign bit and an amplitude bit. The
data are thus four-level, or two-bit, quantized.

During the observations, the interferometer baseline from
Mopra to Tidbinbilla had a projected length of approximately
400 km. The baseline from Hartebeesthoek to Tidbinbilla had
a projected length of approximately 9400 km. The baseline
from the VSOP spacecraft to Tidbinbilla had a length of
approximately 27,000 km during the first period of data, from
14:00:56 UT to 15:55:56 UT, when the spacecraft was near
apogee, and of approximately 22,000 km during the second
period of data, from 20:45:25 UT to 21:13:00 UT, near the
following apogee. The first period spanned a longer time period
and showed more homogeneous statistics.

We correlated the data with the Canadian S2 VLB correlator
(Carlson et al. 1999). This correlator is a reduced-table four-level
correlator; in other words, the lowest-level products are ignored
(Hagen & Farley 1973). We correlated each IF separately with
8192 lags to form a cross-correlation function.

We correlated the signal from the pulsar in six gates, synchro-
nized with the pulsar’s period of approximately 89 ms. Each gate

Table 1
Quantizer Levels: ±v0

On Pulse: Off Pulse:
Gate 1, IF1 Gate 6, IF1

Station Average Std. Dev. Average Std. Dev.

Hartebeesthoek 0.928 0.007 0.944 0.007
Mopra 0.933 0.005 0.944 0.005
Tidbinbilla 0.843 0.017a 0.947 0.004
VSOP spacecraft 0.923 0.014b 0.923 0.014b

Notes.
a Standard deviation reflects pulse-to-pulse variations in intensity.
b Standard deviation reflects primarily a slow drift over the time span of
observations.

was 1 ms wide. The first five gates covered the pulse. The sixth
gate was located far from the pulse, where the pulsar was “off.”
Because of interstellar dispersion, each gate covered a range of
pulse phases. Individual pulses also vary in intensity. We aver-
aged each spectrum over a number of pulses, which reduced,
but did not completely eliminate, this variation. We averaged the
results of the correlation for 2 s, or approximately 22.4 pulsar
periods, except on the baselines to the spacecraft, which we av-
eraged for 0.5 s, or approximately 5.6 pulsar periods. The pulsar
was strong enough to contribute to the system temperature at
the antennas; this contribution affected the noise through set-
tings for the digitizers at the antennas, particularly at the most
sensitive antenna.

For a reduced-table four-level correlator, the optimal level
settings are v0 = ±0.90 standard deviations, with weighting
n = 3 (Cooper 1970). Because the intensity of the pulsar
varies greatly during the pulse, and because the quantizer levels
were adjusted every 10 s to optimal values for the previous
10 s period, the quantizer levels ±v0 were not at this optimal
setting in each gate. Table 1 gives the levels in Gate 1 (where
the most variation occurred) and in the empty gate (which
provides the most contrast). For Tidbinbilla, the largest and
most sensitive antenna, the levels changed dramatically and
the standard deviation was much greater when the pulsar was
“on” because the pulsar made a large, variable contribution
to system temperature. The variations are particularly large in
Gate 1, at the leading edge of the pulse (see Krishnamohan &
Downs 1983). In contrast, for the VSOP spacecraft, the smallest
antenna, the levels were the same on and off pulse, because the
contribution of the pulsar was insignificant; the large standard
deviation of v0 arose from a trend over the time span of the
observations. For the medium-sized antennas, Hartebeesthoek
and Mopra, the levels changed between “on” and “off” gates,
but the standard deviations remained approximately the same.
The correlator corrected for these changes in v0 when estimating
the cross-power spectrum ρ̃; however, differences of v0 among
gates change the properties of the noise in those gates (see
Gwinn 2004, 2006). We discuss these effects in Section 5.

The pulsar gates were so narrow that different lags accu-
mulated different numbers of samples. The 8192 calculated
lags spanned a time comparable to the width of a pulse gate:
(1 ms)× (16 MHz) = 16,000 complex samples; therefore, large
lags accumulated fewer samples than small lags. The correlation
function, r�, was correctly normalized by the number of sam-
ples contributing at each lag (Equation (1)); thus, the average of
the correlation function 〈r�〉 was the same as would have been
measured with uniform sampling. However, the noise varied
with lag.
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We Fourier-transformed the cross-correlation functions to
form cross-power spectra. Because the data were recorded
in single sidebands, the cross-power spectra contained 8192
channels with signal, each with bandwidth 1.95 kHz. The phase
of the cross-power spectrum included instrumental effects,
primarily observational and instrumental delays and rates,
varying slowly with time and frequency (Thompson et al.
1986), and effects of scintillation, varying more rapidly, over
the timescale and bandwidth of scintillation (Desai et al. 1992).

The noise in a particular measurement of the correlation
function was diluted by the integration time but increased by
the number of spectral channels. We accumulated 16 × 106

statistically independent complex samples per second. On Earth-
based baselines, over a time of 2 s, we sampled 22.4 pulse
periods, for an average net integration time of 22.4 ms in one
of our pulsar gates. Our 8192 channel spectra then contained
44 independent complex samples per spectral channel for each
integration period. However, because of the truncation of the
correlation function by the pulse gate discussed in Sections 2.1
and 5.2, higher lags accumulated approximately only half as
many samples; thus, the average number of samples per spectral
channel was approximately 33. On baselines to the VSOP
spacecraft, the shorter integration time yielded 11 samples per
channel and integration time for central lags and approximately
8 samples per spectral channel.

Tones were injected into the signal, for calibration, at Har-
tebeesthoek. These tones were separated by 511 channels
(998 kHz) and were 1 or 2 channels wide. In cross-power spec-
tra, they had the effect of increasing the noise in these spectral
regions. We removed the narrow spectral regions containing
these spikes from the spectra before continuing with analysis.

We removed the average delay and rate by fringe fitting (see
Thompson et al. 1986). The fit included a fringe rate in time,
a delay or slope of phase with frequency, and an overall phase
offset. For baselines between terrestrial antennas, we fringe fit
to (the central 7168 channels in frequency) × (8 samples in
time, or 16 s), in the strongest gate, Gate 2. We applied the
fringe rate and delay to the other gates but calculated the overall
phase offset independently. The results appeared to be nearly the
same as fitting such a model to other gates that contained strong
signal, such as Gate 1; however, we prefer to use precisely the
same model in weak and strong gates. For this paper, the primary
purpose of fringe fitting was to remove all instrumental effects,
leaving only the effects of scintillation and those of statistical
noise in the data.

3.1. Typical Data

Figure 1 shows some sample data, along with the scheme of
pulse gates. To produce this figure, we averaged the real part of a
segment of data for IF1 on the short Mopra–Tidbinbilla baseline,
from 14:15:05 UT to 14:20:00 UT. This averaging reduced the
depth of scintillation. We display the resulting average in the
five gates as a function of pulse phase, including pulse gate and
spectral dispersion. Each gate sampled the IF bandwidth over a
short range of pulse phase; however, because of pulse dispersion,
the low-frequency end of the gate sampled earlier parts of the
pulse than the high-frequency end. The plot gives a rough idea
of the pulse profile, although the effects of scintillation are still
quite large and each sample is averaged over the 1 ms gate. As the
figure shows, each phase in the pulse profile is represented twice,
at two different frequencies. Each frequency is represented five
times, in each of the gates (as well as in the empty sixth gate,
outside the plot).

Figure 1. Gates across the pulse. Lower panel: averaged cross-power spectrum
for the Mopra–Tidbinbilla baseline, in IF1, displayed as a function of pulse
phase. Upper panel: gates displayed with pulsar phase and frequency. Gates are
defined in frequency and time and appear as parallelograms in this plot because
of dispersion. Each point in the lower plot shows one spectral channel, at
the center of 1 ms of pulse phase. Spikes show scintillations during the 5 minute
observing period. Dips in the pulse profile show rolloff of gain at the edges of
the frequency band, in each gate.

Figure 2 shows cross-power scintillation spectra. It compares
the same 1 MHz spectral range for a single 2 s integration,
in Gates 1, 2, and 6 (off-pulse). The scintillation appears as
dramatic variations in amplitude, with large amplitudes con-
centrated in a few spectral regions. As measured from all of
the Mopra–Tidbinbilla interferometric data, the typical scintil-
lation bandwidth was 15 kHz (half-width at half-maximum of
the autocorrelation function, in frequency; Gwinn et al. 2012).
This frequency scale is apparent in the spectra. Note, however,
that noise modulates the scintillation peaks on finer scales and
introduces differences in detailed shapes of the peaks between
gates. The typical scintillation timescale was 9 s (1/e point of
autocorrelation function, in time). This timescale is longer than
the integration time of the spectra. These scintillation scales
are in good agreement with results extrapolated from single-
dish measurements by other observers at other frequencies (see,
for example, Roberts & Ables 1982; Cordes et al. 1985). The
spectrum in Gate 6 appears completely noiselike: indeed, the
samples are drawn from a circular Gaussian distribution in
the complex plane, as discussed in Section 5.1 below.

4. OBSERVATIONS OF THE NOISE DISTRIBUTION

4.1. Strategy: Noise Estimates from Differences

4.1.1. Noise Estimates

Differences between samples separated by much less than
the scales of scintillation reflect noise and intrinsic variability;
these differences can therefore be used to estimate properties
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Figure 2. One frequency range of cross-power spectrum for the
Mopra–Tidbinbilla baseline in Gates 1, 2, and 6. Spectra are averaged over
2 s starting at 15:43:00 UT. The first two gates show nearly the same spectrum,
to within an overall factor, because they sample the same time and frequency
interval of the scintillation pattern. Gate 6 contains only noise.

of the noise. For example, consecutive samples in time can
estimate both the signal (as their average) and the noise (as√

2 times their difference). More generally, we can estimate
the signal and noise as averages over, and differences among,
groups of nearby samples. These estimates are unaffected by
the scintillation if all of the samples are contained well within
the characteristic frequency and timescales of the scintillation.

Specifically, if we assume that the statistically averaged signal
sk is identical in N samples rk(t�) and that the noise nk,� is
uncorrelated, then we can estimate both the signal and the noise
as

sk = 1

N

∑
�

rk(t�)

nk,� =
√

N

N − 1
(rk(t�) − sk), (9)

where the index � runs over the N samples compared. By binning
the estimated noise, nk,�, according to the estimated signal, sk,
and then estimating the variance in each bin, we can identify the
changes of the distribution of noise as a function of signal and
so identify the three coefficients {b0, b1, b2} in Equation (7).

4.1.2. Effects of Scintillation, Variability, Correlation,
and Binning on Noise Estimates

The estimate of noise in Equation (9) does not include four
effects that can contribute to noise: scintillation, amplitude vari-

ations, correlation of noise, and binning. Scintillation changes
the spectrum over the scintillation bandwidth and timescale, so
that differenced samples do not have identical averages. This
change will increase the estimated variance by an amount pro-
portional to the square of the signal and so will affect estimates
of the coefficient of the quadratic term, b2. We limit the span
of averages to less than the scintillation time to minimize this
effect.

Scintillation also introduces differences between the au-
tocorrelation functions at the two antennas, as discussed in
Section 2.3.3 above. The difference grows as the square of
baseline length, divided by the scale of the diffraction pattern
for short baselines. As discussed in Section 2.3.3, an average
over many scintillation elements recovers the behavior given by
Equation (7). However, this average over scintillation elements
converges much more slowly than the average over realizations
of the electric field used for short baselines.

Amplitude variations of the Vela pulsar are significant
(Krishnamohan & Downs 1983; Johnston et al. 2001; Kramer
et al. 2002). Amplitude variations of the pulsar produce differ-
ences between spectra and thus mimic effects of noise. If the
amplitude can be estimated from individual spectra, the effects
can be removed (Gwinn et al. 2011). In the observations reported
here, rapid variations in time appear as spectral variations be-
cause of dispersion, and the S/N within a narrow region of the
spectrum is too low to estimate amplitude reliably. However,
the intrinsic variability of the pulsar is reduced by our averaging
over 22 or 23 pulses.

Correlation of noise in nearby spectral channels can arise
from pulse gating, as discussed in Section 5.2.3 below. Larger
correlations arise from variations of intensity on timescales
shorter than the time to accumulate a single sample of the
spectrum (Gwinn & Johnson 2011; Gwinn et al. 2011). For these
observations, this timescale is 8192/16 MHz = 0.512 ms. The
Vela pulsar shows significant variations on shorter timescales
(Krishnamohan & Downs 1983; Johnston et al. 2001; Kramer
et al. 2002), so we expect these correlations to be significant.
Therefore, we do not use differences among spectral channels to
estimate noise, but only differences among times. (An exception
is the VSOP–Tidbinbilla baseline discussed in Section 4.5,
where low S/N demands differencing in frequency as well as
time.)

Binning of the noise estimates by signal requires an accurate
estimate of signal sk. Even if the noise estimate is correct, it may
be assigned to the wrong bin, altering the form of the estimated
distribution. This problem is most severe when the distribution
of signal varies within the span of the error in sk. In this case,
the noise can “leak” into the wrong bin. Consequently, low S/N
drives the analysis to few, large bins. The problem can be less-
ened by integrating over a longer time interval, so that the aver-
age is better determined. These intervals must be smaller than the
scales of variations from scintillation, which can mimic noise.

Alternative analyses, involving a model for the distribution of
flux density of the scintillating source, avoid use of bins com-
pletely and so eliminate “noise leakage.” Such analyses can esti-
mate all parameters, including noise parameters, simultaneously
(as in Gwinn et al. 2012; Johnson et al. 2012). These methods
are also insensitive to correlations between spectral channels.
However, the differencing and binning analysis presented here
allows straightforward visualization of the noise distribution,
as presented in Sections 4.2 through 4.5 below, without any
assumption about the underlying distributions of visibility or
noise.

6



The Astrophysical Journal, 758:6 (13pp), 2012 October 10 Gwinn et al.

Figure 3. Distributions of noise, in bins of signal in the cross-power spectrum, in IF 2 Gate 2 channels 2048–3072 on the Hartebeesthoek–Tidbinbilla baseline. For
each bin in real and imaginary part of average signal, the ellipse shows one-half the standard deviations of noise within that bin. Ellipses are plotted for bins that
contain N > 100 noise values. Labels are log10 N .

4.2. Observations: Noise in the Complex Plane

The interferometric visibility is complex, and the distribution
of noise varies with it over the complex plane. Figure 3
shows estimated noise as a function of average visibility in
the complex plane, for the Hartebeesthoek–Tidbinbilla baseline.
This baseline was long enough to span much of one scintillation
element, so that the interferometric phase varies over 2π .
Moreover, the antennas are large, so the resulting moderate
S/N allows the complex plane to be divided into many bins.
Note that although the distribution extends over 2π in phase, it
is concentrated toward the right: the average visibility lies on
the positive real axis.

We used data from IF2, Gate 2, channels 2048–3072, for the
entire time span of the observation on that baseline. We formed
spectra, and fringed the data, as described in Section 3 above,
to align the average visibility with the positive real axis. We
then differenced pairs of consecutive time samples to find the
estimated noise nk and signal sk. The data were binned by real
and imaginary parts of the average signal sk, with bin increments
of 0.015 correlator units. For bins containing more than 100
samples, we found error ellipses from the standard deviation of
our estimates of the complex noise nk in that bin. The figure
shows these ellipses. The displayed ellipses extend to one-half
standard deviation of the noise in each bin, to reduce confusing
overlap.

The error ellipses have the form that Equation (7) suggests,
with size increasing with distance from the origin, indicating
increasing noise with increasing signal amplitude. Ellipses close
to the origin are nearly circular, as they must be: the noise
is independent of signal phase, when signal amplitude is near
zero. Both dimensions of the error ellipses grow with increasing
signal; however, the noise in phase with the signal grows faster,

so that the ellipses become elongated farther from the origin. Of
course, amplitude variations in time, between pulses, would
produce the same effect. However, the contribution of such
amplitude variations is small for our 2 s averages.

4.3. Observations: Noise on a Short Baseline

Figure 3 and the form of Equation (7) suggest that we find
noise parallel with and perpendicular to the signal. Thus, as
long as we consider perpendicular and parallel components
separately, we can group together noise estimates with the same
magnitude of visibility. Figure 4 shows this analysis for IF2,
Gate 1 channels 5120–6144 on the Mopra–Tidbinbilla baseline.
This short baseline provided a long observation, yielding many
individual measurements of noise. The chosen gate and channel
range are near the pulse peak, where the source was strong and
S/N is high, providing for many, relatively narrow bins. As
in Equation (9), we averaged the signal over four samples, or
8 s. We then found noise by differencing individual samples
from the average. For each bin in signal amplitude, we present
histograms of noise in phase with the signal and at quadrature.

As the figure shows, noise was equal in the two directions at
zero signal, at lower left, and increased with signal amplitude to
the right and upward. Moreover, noise increased more in phase
with the signal than in quadrature with it, so that the widths of
the two distributions in each panel diverge as signal increases.
The number of points decreased with increasing signal as well,
representing the effect of the underlying distribution of visibility.
The vertical scales are logarithmic, so that a parabolic shape
indicates a Gaussian distribution. We do not display fits of
Gaussian distributions to the histograms in the figure because
these are nearly indistinguishable from the histograms.
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Figure 4. Distribution of noise in phase with the signal (solid) and in quadrature (dotted), for bins in amplitude of the signal, in IF 2 Gate 1 channels 5120–6144 on
the Mopra–Tidbinbilla baseline. Noise was found by finding differences from the averages of four samples in time. Numbers at the top right of each panel show the
amplitude of the signal at the center of the bin. Units are correlator units.

Figure 5 shows the variances of the best-fitting Gaussian
distributions to noise, for the data shown in Figure 4. The noise
in phase with the signal (shown by circles in the figure) increases
quadratically with signal amplitude, whereas noise in quadrature
with the signal (shown by crosses) increases linearly. This is
precisely the behavior expected, as discussed in Section 2.2
above. We fit these two curves with polynomials of the form
given by Equation (7). We assume that the coefficients (except
the quadratic coefficient b2) are the same for σ 2

|| and σ 2
⊥. The

fit is to points in the range 0.006 < I < 0.056. Points at
larger I are based on a small number of samples. In the lowest
bin, noise is slightly higher than expected in both components,
compared with extrapolation from larger bins and the fit. The
noise increases in all directions away from this bin, so that every
point “leaked” from an adjacent bin tends to increase the noise,
as discussed in Section 4.1.2 above. The y-intercept of the fit is
close to the noise level estimated for the empty spectral range
of this gate, discussed in Section 5.1 below. The figure also
shows, as a dotted line, results for noise in a fit to the global
distribution of visibility discussed in Gwinn et al. (2012). The
two techniques usually agree well, for gates and spectral ranges
with high amplitude, so that leakage of noise into adjacent bins
is small, and the distribution can be characterized well.

As a measure of the quality of these fits, we note that in the
absence of self-noise, all 16 points in Figure 4 would have a

single value b0. The mean square residual about the best-fitting
single value is 6.5 × 10−1. Our model included two additional
parameters, b1 and b2, and reduced the mean square residual
to 2.4 × 10−3, or by a factor of 268. The F-ratio test gives the
likelihood of this improvement occurring by chance of less than
10−12 (Bevington & Robinson 2003). Thus, the three-parameter
model is excellent. If we adopt the parameters from Gwinn et al.
(2012) shown by the dashed lines in Figure 4, the mean square
residual is 3.3 × 10−3.

The difference between σ|| and σ⊥ reflects self-noise and
effects of amplitude variations. The contribution of self-noise
was 1/Nobs = 1/33, as discussed in Section 3. As Equation (8)
shows, amplitude variations on timescales longer than the
accumulation time, approximately 1 ms, and shorter than the
2 s integration time contributed to b2. For the data in the figure,
we found b2 = 0.12. This value indicates that (δI/I )2 = 0.09,
as would be expected after integrating over 22 or 23 pulses
(Krishnamohan & Downs 1983; Johnston et al. 2001; Kramer
et al. 2002).

4.4. Observations: Noise on an Intermediate Baseline

Figure 6 shows the behavior of noise on the Hartebeesthoek–
Tidbinbilla baseline. This baseline had projected length of over
9000 km during the observation; however, it is intermediate in
length in the sense that it is comparable to the length scale of the
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Figure 5. Variances of noise in phase with the signal (circles) and at quadrature
(crosses) estimated from differences of channels from the average of four
consecutive samples in time. Data are from IF 2 Gate 1 channels 5120–6144 on
the Mopra–Tidbinbilla baseline. Solid curves show best-fitting line and parabola
to the points, with the fit demanding the same linear terms for both. Leftmost
and rightmost points were excluded from the fit. The dashed curve shows the
curve from a fit to the full distribution (Gwinn et al. 2012). The heavy tick on
the y-axis shows noise in the spectral region of Gate 1 empty of signal (see
Figure 8). Units are correlator units.

scintillation pattern. Moreover, the baseline was short compared
with the baseline to the VSOP spacecraft. We included data
from the entire time span recorded, in IF2, Gate 1, channels
5120–6144. This is the same gate and frequency range as shown
for the Mopra–Tidbinbilla baseline in Figure 5. This range was
chosen for comparison, and because Gate 1 allows comparison
with an empty region of the gate. We fit these two curves with
polynomials of the form given by Equation (7), to points in the
range 0.006 < I < 0.056. Our three-parameter noise model
reduced the mean square residual over the 10 points in the fit,
relative to a single variance, by a factor of 1112. The F-ratio
test gives probability of this occurring by chance of less than
5 × 10−12.

Comparison of Figures 5 and 6 shows interesting conse-
quences of the longer baseline length. The maximum amplitude
was smaller, because as the baseline length approaches the scale
of the scintillation, occurrences of high intensity at both stations
become less likely. The contribution of background noise b0 was
smaller and the self-noise was greater, perhaps because Harte-
beesthoek has larger area than Mopra (26 m rather than 22 m
diameter).

The points at high amplitude show scatter about the fitted
curves; for this intermediate baseline, the average for b1 con-
verges over some timescale intermediate between the many sam-
ples of electric field for a short baseline and the many scintil-
lations required for a long baseline. The first bin is elevated
relative to the extrapolated, fitted curves, and the y-intercept of
the fitted curves lies above the noise found in the empty part
of the gate. This may result from leakage of noise into adjacent
bins and the different convergence statistics.

Figure 6. Same as Figure 5, but for the Hartebeesthoek–Tidbinbilla baseline,
for IF 2 Gate 1 channels 5120–6144. Again, the heavy tick on the y-axis shows
noise in the spectral region of Gate 1 empty of signal.

4.5. Observations: Noise on a Long Baseline

As an example of noise on a long baseline, we analyze the
long baseline from the VSOP spacecraft to Tidbinbilla, using
procedures similar to those for the short Mopra–Tidbinbilla
baseline. On this long baseline the phase of the cross-power
spectrum varied through many turns because of scintillation.
Instrumental phase variations were larger and more rapid than
on the Mopra–Tidbinbilla baseline discussed above, and of
course the 8 m spacecraft antenna is smaller than Mopra. Fringe
fitting the data, as described in Section 3, was challenging
because of the rapid variation of phase and rate from spacecraft
motion, the large variations of phase with scintillation, and the
low average visibility.

For analysis of noise, we used fewer, larger bins in visibility
so that the noise in a bin does not greatly exceed bin width. For
our tests, we used data from the first orbit, from IF1. We used
Gate 2, which is near the peak of the pulse and has high
flux density across the observing band, to maximize signal
and so ease fringe fitting. To improve the quality of the noise
measurement, and to reduce leakage into adjacent bins, we
found averages for the real and imaginary parts of the visibility
for spans of four channels in frequency and eight samples in
time (7.8 kHz × 4 s). The frequency span lies well within the
scintillation bandwidth of 15 kHz, and the time span within the
scintillation timescale of 9 s and the fringing time of 16 s.

The noise is different in phase and in quadrature with the
signal. Figure 7 shows the variances σ|| and σ⊥ plotted with the
averaged magnitude of the visibility |sk|. We fit to the range
0.005 < |sk| < 0.020. Again, quadratic and linear models, with
linear terms identical, fit the data well for small signal amplitude.
The three-parameter model reduces the mean square residual by
a factor of 31, relative to a single-parameter model. The F-test
gives probability of chance occurrence of less than 6 × 10−5.

The quadratic term is small compared with the linear term, in
comparison with the other baselines, as expected for the lower
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Figure 7. Same as Figure 5, but the VSOP–Tidbinbilla baseline, and in IF1
Gate 2 in channels 1024–3079, for Orbit 1 near apogee, for 14:52:16 to 15:19:49
UT. Averaged signals from (4 channels in frequency) × (8 samples in time).

S/N for this less-sensitive baseline. The point at smallest
amplitude shows considerably higher noise than that extrap-
olated from larger amplitudes, again most likely from “leak-
age” of noise from other bins into this bin. As discussed in
Section 2.3.3, the noise converges to the expected form only
in an average over many scintillation elements. This slow con-
vergence and the relatively small number of samples at large
visibility contribute to the variation of the points about the ex-
pected form.

5. ANALYSIS: CORRELATOR EFFECTS

5.1. Statistics of Noise in an Empty Gate

5.1.1. Variance: Short Baseline

In spectral regions empty of signal, the average value of the
cross-power spectrum is zero, and the noise closely approxi-
mates a Gaussian distribution. Figure 8 shows two examples
for the Mopra–Tidbinbilla (MT) baseline: the distribution of
the real and imaginary part of r̃k for IF1 channels 1024–2048
during the period 19:08:17 UT to 21:12:52 UT, in Gates 1
and 6. Gate 6 was correlated only for IF1. The statistics of
the real and imaginary parts are nearly identical, as expected
for the noise, as the figure shows. The noise is clearly smaller
in Gate 1, when the pulsar is “on” in another part of the gate.
The variances are 58.3 × 10−6 correlator units2 for Gate 1 and
96.5 × 10−6 correlator units2 for Gate 6.

The change in noise is an artifact of digitization (Gwinn
2006). The reduction is the consequence both of the change
in autocorrelation spectrum α̃ and of the different levels of
the quantizer relative to the standard deviation of the signal
(Table 1). Equation (56) of Gwinn (2006) gives the noise in the
absence of signal:

b0 = ΓC

2N

Nobs
(AX2 + BX(α̃k − 1)) (AY2 + BY (α̃k − 1)) . (10)

Figure 8. Distribution of noise with zero signal for the MT baseline in Gate 6
and Gate 1 in IF1, channels 1024–2048. Solid lines show real parts of cross-
power r̃k ; dotted lines show imaginary parts. Gate 6 is empty: the pulsar is “off.”
Gate 1 contains pulsar emission at higher frequencies but is nearly empty in
this spectral range. Solid curve shows the fit for a Gaussian distribution to the
histogram, for Gate 6.

This expression relates the notation of this paper on the left
side of the equation with that of Gwinn (2006) on the right.
Evaluation requires the autocorrelation spectrum α̃k , subject to
the normalization condition:

∑
α̃k = 1, where the sum runs over

the 2N spectral channels (Gwinn 2006, Equation (1)). Effects
of the change in the threshold for the quantizer v0 are contained
in the constants AX2, BX for station X and AY2, BY for Y. These
quantities can be calculated from the statistics of the reduced-
table two-bit correlator with n = 3 and the values for v0 given
in Table 1. The correlator-dependent gain ΓC parameterizes
instrumental effects. The number of spectral channels is 2N ,
and the number of observations is Nobs. For our observations,
on a short baseline, 2N/Nobs ≈ 33 as discussed in Section 3.

For Gate 6, empty of any pulsar flux, the autocorrelation
function was flat, and α̃k ≡ 1. When the pulsar turns on in
part of the spectrum, the autocorrelation function in the off-
pulse portion must fall, because α̃k is normalized. This accounts
qualitatively for the reduced noise level in the empty portion
of Gate 1 relative to the completely empty Gate 6, although
changes in v0 also play a role.

A quantitative calculation of the autocorrelation spectrum
when the pulsar is “on” is necessarily indirect. We estimated
the relative background noise of the antennas from tabulated
system-equivalent flux densities and used the average cross-
power spectrum in Gate 1 (a smoothed, larger average similar
to that shown in Figure 1) to estimate the contribution of the
source to the spectrum. Using the normalization condition, we
estimated α̃k in regions of the spectrum without pulsar flux.
We used the tabulated average values of v0 and the correlator
parameter n = 3 to determine the constants AX2, BX , AY2, and
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Figure 9. Distribution of variance of noise in the empty Gate 6, averaged over the
spectrum, plotted as a histogram. The vertical lines show the expected horizontal
locations of peaks given by the numbers of pulses within an integration time:
22 and 23 for the upper panel (Mopra–Tidbinbilla baseline) and 5 and 6 for the
lower panel (VSOP–Tidbinbilla baseline). Vertical extents of the lines show the
expected relative populations of the two peaks. The dotted lines show a fit for
the superposition of two Gaussian distributions to the histograms.

BY , for Gates 1 and 6. Equation (10) then provided the noise
in the two cases; their ratio is independent of ΓC . We found
an expected ratio of 1.23 of the standard deviation of noise in
Gate 6 to that in Gate 1. This is in approximate agreement with
the measured ratio of 1.29, from fits to the histograms shown
in Figure 8. A more sophisticated calculation might include
use of the autocorrelation spectra for the two antennas and
quantizer populations measured synchronously with them; it
might also include a spectral model for noise with frequency at
each antenna.

5.1.2. Noise and Number of Pulses

The observed distributions of noise are superpositions of
underlying distributions. For example, not all integration times
contained the same number of samples. On the MT baseline,
the signal was integrated for 2 s, or 22.4 pulse periods; more
precisely, 61% of the integrations contained 22 pulses, and 39%
contained 23. Although the data are normalized to the integration
time, the variance of the noise, parameterized by b0, will be 4%
greater for the integrations with fewer pulses.

Of course, the number of pulses was the same for all channels
within a given sample of the spectrum. A spectral average
provides an estimate of variance. We demonstrate the effect
of integrating over different numbers of pulses in Figure 9. We
plot a histogram of the variances over channels 1024–2048,
for samples from the time span of the data in Section 4.3, in
IF1. The histogram shows two clear peaks. The centroids of the
peaks lie at horizontal positions close to the expected ratio of
22:23. Their populations are close to the expected ratio of 61:39.

The vertical lines show these positions, constrained to match the
overall variance of the data set. The dotted line shows a simple fit
of a model for the sum of two Gaussian distributions to the two
peaks, with the normalizations and locations of the peaks set
as for the lines, with net normalization equal to the number of
samples and the widths of the peaks equal.

5.1.3. Variance: Long Baseline to Spacecraft

We analyzed noise for the long baseline from the VSOP
spacecraft to Tidbinbilla, by examining the distribution of noise
in individual channels and time samples. The much smaller
number of pulses per 0.5 s integration on the VSOP–Tidbinbilla
baseline had a much greater effect on the noise, as Figure 9
shows. For this figure, we used IF1, in the empty Gate 6, for
the data for Orbit 1. Comparison of the pulsar period with the
integration time indicated that 40% of samples contain five
pulses and 60% contain six pulses. Again, the vertical lines
under the two peaks show their expected locations, constrained
to match the overall variance of the data set. Locations are in
the expected 5:6 ratio, and populations 40:60. We again show a
fit of a model for the sum of two Gaussian distributions to the
two peaks. In this case, the widths of the peaks are proportional
to the squares of the variances, as expected for purely statistical
contributions to the widths of the peaks.

We found that noise in Gate 6 from the long baseline was
nearly Gaussian, using an analysis similar to that in Section 5.1.
We separated the noise samples into two groups, according to
the variance. The variances of the two groups are 3.44 × 10−4

and 4.12 × 10−4 (correlator units)2, respectively. The variance
of the resultant distribution is a weighted sum of the two:
3.71 × 10−4 (correlator units)2. In the empty portion of Gate
1, the statistics are similar, but with smaller resultant variance:
3.10 × 10−4 (correlator units)2, for channels 1024–2048. As for
the Mopra–Tidbinbilla baseline, the decrease in noise arises
from the presence of signal elsewhere in the band. Using the
method discussed in Section 5.1.1, we estimated the expected
ratio of the standard deviations of noise in Gate 6 to that in Gate 1
to be 1.19, for the VSOP–Tidbinbilla baseline. This expectation
is in reasonable agreement with the measured ratio of 1.20.

5.2. Distribution of Noise with Correlator Lag

Variances and covariances completely characterize Gaussian
noise. Covariance of noise in different spectral channels can
arise from quantization (Gwinn 2006), from source variability
on short timescales (Gwinn & Johnson 2011; Gwinn et al. 2011),
and from pulsar gating, as described in the following section. In
this section, we calculate the covariance for noise in an empty
gate and compare with observations. We then discuss how, for
gates containing signal, the covariance introduced by source
variability masks that from pulsar gating.

5.2.1. Pulsar Gate without Wrap

Pulsar gating can introduce spectral correlations. Indeed,
any temporal modulation is predicted to introduce spectral
correlation (Gwinn & Johnson 2011). For our observations, the
maximum lag correlated approaches the width of a pulse gate.
Therefore, at large lag, we obtain fewer measurements of the
correlation function than at small lag. The covariance of noise
between two spectral channels is given by Fourier transform of
the product of elements of the correlation function. The Fourier
transform of two copies of Equation (1) leads to an expression
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Figure 10. Correlation function of noise in empty Gate 6 on the MT baseline,
plotted with lag τ . Points show measured mean-square correlation function.
Solid line shows theoretical curve for effects of pulse gating. A single parameter,
the overall scale, has been fit to match theory to observation.

similar to Equation (22) of Gwinn (2006):

〈r̃k r̃
∗
k+�〉 − 〈r̃k〉〈r̃∗

k+�〉 =
N−1∑

υ,μ=−N

1

(Nobs − |υ + μ|)(Nobs − |υ|)
×

∑
n,m

e[i 2π
2N

(kμ+(k−�)υ)]αn−mα−(n−m)+μ.

(11)

Note that, in our case, the limits of the sums over n and
m depend on both υ and μ. This is because the correlation
functions rτ , r

∗
ν are not averaged over all of the samples

at both stations. The correlation of noise between spectral
channels given by Equation (11) depends on the specific form of
the autocorrelation function, ατ . However, the autocorrelation
function is always maximum at α0 = 1 for lag τ = 0 and usually
falls rapidly to zero for larger lags τ .

5.2.2. Correlation of Noise: White Signal and White Noise

We suppose in this section that the original time series is
spectrally flat or “white” noise (Papoulis 1991). Consequently,
the correlation function is zero except at the central lag: α0 = 1,
and αυ = 0 for υ �= 1. We then find

〈rυr∗
υ〉 − 〈rυ〉〈r∗

υ〉 = 1

Nobs − |υ| . (12)

Because we have normalized the correlation function and the
signal is white, the mean square noise is just the reciprocal of
the number of samples.

In the spectral domain, this variation of the number of samples
leads to correlation. In Equation (11), the product of α values is

zero unless m = n and μ = 0. Performing the remaining sums,
we find for the correlation between channels

〈r̃k r̃
∗
k+�〉 − 〈r̃k〉〈r̃∗

k+�〉 =
N−1∑

υ=−N

e[i 2π
2N

(k−�)υ] 1

Nobs − |υ| . (13)

This correlation is largest for close spectral channels (� � 2N )
because the noise in the correlation function is largest for large
lag (υ → N ).

5.2.3. Observed Correlation of Noise in an Empty Gate

We compared observations on the Mopra–Tidbinbilla base-
line with the theoretical prediction of Equation (12) and find
quantitative agreement. Figure 10 shows the results. To make
the figure, we re-transformed the spectrum for each time
interval and found the mean-square correlation function 〈rτ r

∗
τ 〉.

The data used to make Figure 10 are from Gate 6, IF2, of the
Tidbinbilla–Mopra baseline, from 14:15 to 15:41 UT. We used
the full recorded bandwidth. The downward-pointing spike at
τ = 5000 apparently results from interference. The solid curve
shows the form predicted by Equation (12), as expected for
Nobs = 16,000 complex samples, for the 1 ms length of the
pulsar gate and our 16 MHz bandwidth.

Figure 10 shows less noise at small lag, as Equation (12)
suggests. From Fourier transform of the theoretical curve
shown in the figure, we find that noise in the spectrum r̃k

is anticorrelated in adjacent channels by approximately −6%,
expressed as normalized correlation. This correlation falls off
rapidly, however: it is only +0.4% in the second channel, −0.7%
in the third, and so on.

5.2.4. Correlation of Noise: Signal Present

If the spectrum is not “white,” then Equation (11) still holds,
and α0 = 1. For typical spectra, we expect that correlations
away from the zero lag will be small: |ατ | � 1, for τ �= 0.

If all of the features of the spectrum are fully spectrally
resolved, then any nonzero values of ατ will be concentrated
in a range close to τ = 0, and the effect of the reduced
denominator on the right-hand side of Equation (11) will tend
to increase the noise at large lag τ . On the other hand, if the
spectrum is not fully resolved, some nonzero values of ατ

will be missing from the sum, which will tend to decrease the
noise at large lags. Both effects are larger for higher lags τ
and thus will tend to introduce small-lag correlations in the
conjugate spectral domain. The first will introduce negative
correlations, the second positive correlations. For well-resolved
spectra, the first effect will predominate and will likely produce
anticorrelations comparable to those estimated for white spectra
and noise.

6. CONCLUSIONS

6.1. Summary of Results

We compare theoretical predictions for the distribution of
noise for cross-power spectra with observations of a scintillat-
ing pulsar, the Vela pulsar. We describe observations made with
Earth-based very long baseline interferometry baselines and
with baselines from an orbiting spacecraft to Earth. These obser-
vations extend previous studies (Gwinn & Johnson 2011) to the
regime of high S/N and large variations in interferometric phase.

In Section 2, we argue that, in the presence of signal, noise
on a short baseline should be drawn from an elliptical Gaussian

12
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distribution in the complex plane. The theory was previously
presented in Gwinn (2006) and Gwinn & Johnson (2011). The
major axis of the distribution is aligned with the direction of
the signal. The variance along the minor axis depends linearly
on signal strength; the variance along the major axis has the
same linear dependence, plus a quadratic term. At zero signal,
the major and minor axes are equal and the distribution of noise
is a circular Gaussian, as for a gate or spectral region empty of
signal.

We test this theory with observations on the baselines from
Mopra, Hartebeesthoek, and the VSOP spacecraft to Tidbinbilla
in Section 4. We estimate noise by comparing samples within
the characteristic scales of the scintillation and binning their
differences by average interferometric visibility. We find that
the distribution of noise closely follows the expected elliptical
Gaussian form for each visibility, and the scaling with visibility
of the major and minor axes corresponds to the quadratic and
linear noise polynomials, respectively. The quadratic coefficient
accurately reflects the number of samples and the contribution
of intrinsic amplitude variations; the constant coefficient agrees
with that estimated from empty portions of the spectrum for the
Mopra–Tidbinbilla and Hartebeesthoek–Tidbinbilla baselines.

In Section 5, we demonstrate that quantization, gating,
and integration each affect the properties of the noise. One
interesting consequence is that the noise in the presence of
signal is less than that in a completely empty spectrum—a
result of the combination of quantization and spectral variations.
Also, pulsar gating leaves fewer samples, thus larger noise, at
larger lags; this effect incurs correlations in the spectral noise. In
principle, complete knowledge of the quantizer levels for each
integration period, and of the autocorrelation functions at the
two antennas, allows calibration of these effects. Alternatively,
recording the signal with many quantizer levels increases the
dynamic range and reduces effects of variation in quantizer
levels. Flexible software correlators, such as the DiFX correlator
(Deller et al. 2007), can control these artifacts, while Nyquist-
sampled spectra of individual pulses obviate the difficulties in
characterizing inhomogeneities within the integration (Johnson
& Gwinn 2012).

6.2. Self-noise for an Interferometer

We present observations for a scintillating pulsar, but the
effects of self-noise hold for any interferometric observation.
A careful evaluation of these effects is essential for a priori
estimates of the accuracy of pulse timing and spectroscopy
using single-dish observations and for scintillation studies and
astrometry using interferometry.

Many telescopes now under construction or being planned,
such as LOFAR, ASKAP, and SKA, will operate as interferom-
eters, with many baselines among many antennas of a particular
design. Each baseline will have the distribution of noise we de-
scribe above in Section 2 and as we observe for the Vela pulsar.
Because each telescope in a large array receives precisely the
same noiselike signal from the source, increases in the num-
ber of antennas and averaging of many baselines do not change
self-noise, when expressed in terms of flux density. However,
averages over many baselines do decrease the background noise.
Stated in terms of the notation introduced in Section 2, increas-
ing the number of identical antennas NA reduces b0 as N−2

A

and b1 as N−1
A but does not change b2. For true “tied-array”

operation, where electric fields from all antennas are phased
and summed before correlation, statistics are those of a single

dish (Gwinn & Johnson 2011, Equation (11)). As the number of
antennas becomes larger, self-noise becomes more important.
When the source dominates the system temperature, further im-
provements demand more samples Nobs, as produced by wider
bandwidth or longer integration time: a greater aperture does not
provide more accuracy. Our expression Equation (5) generalizes
this result to interferometry.

Astrometry depends on measurements of interferometric
phase. Equations (5) and (7) show that the maximum attainable
phase accuracy is δφ ≈ σ⊥/s ≈ √

n/(Nobss), or the inverse
square root of the S/N, divided by

√
Nobs. Similarly, the

maximum attainable accuracy in measurement of flux density
by an interferometer, or a large single dish, is approximately
the flux density of the source divided by

√
Nobs. Likewise, the

maximum attainable accuracy in pulsar timing is approximately
the width of the narrowest feature in the profile, divided by the
S/N and by

√
Nobs. However, when self-noise is the limiting

factor, the maximum attainable accuracy is simply the width of
that feature, divided by

√
Nobs.
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