417 research outputs found

    AAD-2004, a potent spin trapping molecule and microsomal prostaglandin E synthase-1 inhibitor, shows safety and efficacy in a mouse model of ALS

    Get PDF
    While free radicals and inflammation constitute major routes of neuronal injury occurring in neurodegenerative diseases, neither antioxidants nor nonsteroidal anti-inflammatory drugs (NSAIDs) have shown significant efficacy in human clinical trials. To explore the possibility that concurrent blockade of free radicals and PGE2-mediated inflammation might constitute a safe and effective therapeutic approach to certain neurodegenerative diseases, we have developed 2-hydroxy-5-[2-(4-trifluoromethylphenyl)-ethylaminobezoic acid (AAD-2004) as a derivative of aspirin. AAD-2004 completely removed free radicals at 50 nM as a potent spin trapping molecule and inhibited microsomal prostaglandin E synthase-1 (mPGES-1) with an IC50 of 230 nM. Oral administration of AAD-2004 blocked free radical formation, PGE2 formation, and microglial activation in the spinal motor neurons of SOD1G93A mice. As a consequence, AAD-2004 reduced autophagosome formation, axonopathy, and motor neuron degeneration, improving motor function and increasing life span. In these assays, AAD-2004 was superior to ibuprofen or riluzole. Gastric bleeding was not induced by AAD-2004 even at a dose 400-fold higher than that required to obtain maximal therapeutic efficacy in SOD1G93A mice. Targeting both mPGES-1 and free radicals may be a promising approach to reduce neurodegeneration in ALS and possibly other neurodegenerative diseases

    Macrophage-Derived Thrombospondin 1 Promotes Obesity-Associated Non-Alcoholic Fatty Liver Disease

    Get PDF
    Background Thrombospondin 1 (TSP1) is a multifunctional matricellular protein. We previously showed that TSP1 has an important role in obesity-associated metabolic complications, including inflammation, insulin resistance, cardiovascular, and renal disease. However, its contribution to obesity-associated non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD or NASH) remains largely unknown; thus, we aimed to determine its role. Methods High-fat diet or AMLN (amylin liver NASH) diet-induced obese and insulin-resistant NAFLD/NASH mouse models were utilised, in addition to tissue-specific Tsp1-knockout mice, to determine the contribution of different cellular sources of obesity-induced TSP1 to NAFLD/NASH development. Results Liver TSP1 levels were increased in experimental obese and insulin-resistant NAFLD/NASH mouse models as well as in obese patients with NASH. Moreover, TSP1 deletion in adipocytes did not protect mice from diet-induced NAFLD/NASH. However, myeloid/macrophage-specific TSP1 deletion protected mice against obesity-associated liver injury, accompanied by reduced liver inflammation and fibrosis. Importantly, this protection was independent of the levels of obesity and hepatic steatosis. Mechanistically, through an autocrine effect, macrophage-derived TSP1 suppressed Smpdl3b expression in liver, which amplified liver proinflammatory signalling (Toll-like receptor 4 signal pathway) and promoted NAFLD progression. Conclusions Macrophage-derived TSP1 is a significant contributor to obesity-associated NAFLD/NASH development and progression and could serve as a therapeutic target for this disease. Lay summary Obesity-associated non-alcoholic fatty liver disease is a most common chronic liver disease in the Western world and can progress to liver cirrhosis and cancer. No treatment is currently available for this disease. The present study reveals an important factor (macrophage-derived TSP1) that drives macrophage activation and non-alcoholic fatty liver disease development and progression and that could serve as a therapeutic target for non-alcoholic fatty liver disease/steatohepatitis

    PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets

    Get PDF
    AbstractMotivation: Core sets are necessary to ensure that access to useful alleles or characteristics retained in genebanks is guaranteed. We have successfully developed a computational tool named 'PowerCore' that aims to support the development of core sets by reducing the redundancy of useful alleles and thus enhancing their richness.Results: The program, using a new approach completely different from any other previous methodologies, selects entries of core sets by the advanced M (maximization) strategy implemented through a modified heuristic algorithm. The developed core set has been validated to retain all characteristics for qualitative traits and all classes for quantitative ones. PowerCore effectively selected the accessions with higher diversity representing the entire coverage of variables and gave a 100% reproducible list of entries whenever repeated.Availability: PowerCore software uses the .NET Framework Version 1.1 environment which is freely available for the MS Windows platform. The files can be downloaded from http://genebank.rda.go.kr/powercore/. The distribution of the package includes executable programs, sample data and a user manual.Contact: [email protected]

    Unwinding of a cholesteric liquid crystal and bidirectional surface anchoring

    Get PDF
    We examine the influence of bidirectional anchoring on the unwinding of a planar cholesteric liquid crystal induced by the application of a magnetic field. We consider a liquid crystal layer confined between two plates with the helical axis perpendicular to the substrates. We fixed the director twist on one boundary and allow for bidirectional anchoring on the other by introducing a high-order surface potential. By minimizing the total free energy for the system, we investigate the untwisting of the cholesteric helix as the liquid crystal attempts to align with the magnetic field. The transitions between metastable states occur as a series of pitchjumps as the helix expels quarter or half-turn twists, depending on the relative sizes of the strength of the surface potential and the bidirectional anchoring. We show that secondary easy axis directions can play a significant role in the unwinding of the cholesteric in its transition towards a nematic, especially when the surface anchoring strength is large

    Anchoring Competition on Nanosurface Boundaries with Conflicting Mixed Nematic Anchoring Properties

    Get PDF
    We propose a technique for continuously controlling the full range of pretilt angles with a high process margin. The proposed method is characterized by tuning the thickness of a heterogeneous polyimide layer that consists of homeotropic and planar polyimides. The thickness of the mixture can be controlled by varying the concentration of the solvent. The liquid crystal (LC) pretilt generated at the very thin mixture film is insensitive to some incorrect mixing ratio, since the segregation of the depth direction of the mixture including the van der Waals effect in interactions with LCs decreases ultimately. Consequently, we can obtain continuous LC pretilt angles with a high process margin by controlling mixing ratio in a very thin heterogeneous polyimide film. Furthermore, it is possible to achieve excellent reliability, uniformity, and productivity using this technique. A simple mathematical model based on van der Waals interaction provides a good description of the experimental results

    Distinct regulation of cytoplasmic calcium signals and cell death pathways by different plasma membrane calcium ATPase isoforms in MDA-MB-231 breast cancer cells

    Get PDF
    Plasma membrane calcium ATPases (PMCAs) actively extrude Ca2+ from the cell and are essential components in maintaining intracellular Ca2+ homeostasis. There are four PMCA isoforms (PMCA1-4), and alternative splicing of the PMCA genes creates a suite of calcium efflux pumps. The role of these different PMCA isoforms in the control of calcium-regulated cell death pathways and the significance of the expression of multiple isoforms of PMCA in the same cell type are not well understood. In these studies, we assessed the impact of PMCA1 and PMCA4 silencing on cytoplasmic free Ca2+ signals and cell viability in MDA-MB-231 breast cancer cells. The PMCA1 isoform was the predominant regulator of global Ca2+ signals in MDA-MB-231 cells. PMCA4 played only a minor role in the regulation of bulk cytosolic Ca2+, which was more evident at higher Ca2+ loads. Although PMCA1 or PMCA4 knockdown alone had no effect on MDA-MB-231 cell viability, silencing of these isoforms had distinct consequences on caspase-independent (ionomycin) and -dependent (ABT-263) cell death. PMCA1 knockdown augmented necrosis mediated by the Ca2+ ionophore ionomycin, whereas apoptosis mediated by the Bcl-2 inhibitor ABT-263 was enhanced by PMCA4 silencing. PMCA4 silencing was also associated with an inhibition of NF kappa B nuclear translocation, and an NF kappa B inhibitor phenocopied the effects of PMCA4 silencing in promoting ABT-263-induced cell death. This study demonstrates distinct roles for PMCA1 and PMCA4 in the regulation of calcium signaling and cell death pathways despite the widespread distribution of these two isoforms. The targeting of some PMCA isoforms may enhance the effectiveness of therapies that act through the promotion of cell death pathways in cancer cells
    corecore