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Abstract We examine the influence of bidirectional anchoring on the unwinding of a planar cholesteric liquid
crystal induced by the application of a magnetic field. We consider a liquid crystal layer confined between two
plates with the helical axis perpendicular to the substrates. We fix the director twist on one boundary and allow
for bidirectional anchoring on the other by introducing a high-order surface potential. By minimizing the total
free energy for the system, we investigate the untwisting of the cholesteric helix as the liquid crystal attempts to
align with the magnetic field. The transitions between metastable states occur as a series of pitchjumps as the helix
expels quarter- or half-turn twists, depending on the relative sizes of the strength of the surface potential and the
bidirectional anchoring. We show that secondary easy axis directions can play a significant role in the unwinding
of the cholesteric in its transition towards a nematic, especially when the surface anchoring strength is large.

Keywords Cholesteric liquid crystal · Helix unwinding · Weak anchoring

1 Introduction

A cholesteric (or chiral nematic) is a type of liquid crystal whose chiral nature causes the constituent molecules to
align at a slight angle to one another. This leads to a periodic configuration in which the preferred direction of the
long molecular axis (or director) twists continuously in space perpendicular to a helical axis. The length over which
the director rotates by 2π radians is known as its pitch and can vary from 200 nm upwards [1, p. 5]. In the absence of
any external influences such as an applied field, the cholesteric possesses a natural or equilibrium pitch that depends
on the temperature of the liquid crystal. However, due to diamagnetic or dielectric anisotropy, the period of the
helical structure can be changed by the application of a magnetic or electric field. De Gennes [2] and Kedney and
Stewart [3] predict theoretically how the helix can be completely unwound in an infinite sample of cholesteric liquid
crystal, resulting in a cholesteric to homeotropic (planar) nematic phase transition. The same field-induced transition
is also observed experimentally by Meyer [4]. Subsequent studies examine the dependence of the observed helical
pitch on the field strength and critical fields for complete unwinding [5–8] and allow experimentalists to measure
physical quantities, for example, the twist elastic constant of the cholesteric.
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When considering an infinite sample of cholesteric (i.e. a relatively thick sample in which the bulk is unaffected
by any boundary surfaces), the pitch changes continuously, increasing smoothly with the applied field until it
becomes infinite and the helix is completely unwound. However, when the liquid crystal has a finite thickness,
confined between two substrates with some degree of anchoring on the surfaces, changes in pitch may occur in
discrete jumps. These pitchjumps can arise due to changes in the natural pitch with temperature [9–11] and are often
associated with thermal hysteresis [12–14]. An applied field can also lead to stepwise changes in pitch and helix
unwinding in confined samples [15–18]. Kedney and Stewart [19] present a theoretical analysis of the unwinding
of a cholesteric with strong anchoring on the substrates, i.e. the angle of director twist is fixed on the boundaries. As
we will discuss in Sect. 3, different metastable states can coexist for a given field strength. The discrete pitchjumps
coincide with a change in the nature of the twist profile that provides the global energy minimizer. More recently,
Scarfone et al. [20] generalize the problem of [19] to consider an in-plane magnetic field tilted at some angle with
respect to fixed parallel twist directions on the substrates. The analysis of Lelidis et al. [21] allows for an incomplete
number of half twists in the liquid crystal layer by imposing strong homogeneous anchoring with non-parallel
director twists on the two confining plates.

More realistic boundary conditions for liquid crystals allow for the director angle on a boundary to vary because
of the competition between the bulk alignment and a preferred surface direction (or easy axis direction). The director
is thought to be weakly anchored at the substrate, with a degree of flexibility controlled by a finite anchoring strength
combined with a surface energy. Easy axis directions can be imposed on solid substrates via a variety of methods,
for example, surface rubbing and oblique evaporation of a SiO thin film on the surface. As the anchoring strength
increases, we revert to strong boundary conditions with the direction fixed in the easy axis direction on the substrate,
also known as infinite anchoring. Belyakov and co-workers [22–27] present theoretical analyses of the untwisting
of a cholesteric due to the action of a field or temperature with weak anchoring on the bounding plates, whereas the
stability of the helical structures when there is asymmetry due to different anchoring strengths on the two surfaces
is considered by Kiselev and Sluckin [28].

Most of the studies examining discrete jumps in pitch in cholesteric liquid crystal cells bounded by two parallel
substrates employ an anchoring potential of the form

ws(φ) = 1

2
τ0 sin2 φ (1)

on one or both plates, where τ0 is the anchoring strength andφ is the director azimuthal twist angle at the surface. This
is the twist equivalent of the quadratic surface energy density first proposed by Rapini and Papoular [29] and adopted
widely in models for liquid crystals [30, p. 49]. The form (1) represents a substrate that is rubbed to provide easy
axes for the director at φ = kπ radians, where k is an integer. The quadratic expansion also ensures that the inversion
symmetry of cholesterics is preserved. It is also possible, however, to obtain bidirectional surface ordering in liquid
crystal devices with two easy directions on a substrate. This can be achieved via a variety of treatments at the upper
surface plate, for example, patterned surfaces [31–33], SiO evaporation [34] and non-parallel aligning films [35].
Mathematically, bistable surface anchoring can be modelled by introducing a higher-order surface potential into (1).
The theoretical studies of Sergan and Durand [34], Barberi et al. [35] and Yoneya et al. [36] incorporate a quartic
expansion in sin φ,

ws(φ) = 1

2
τ0(sin2 φ + ζ sin4 φ). (2)

The dimensionless bidirectional coefficient ζ depends on the nature of the interaction between the liquid crystal
and the surface, with ζ = 0 corresponding to the quadratic Rapini–Papoular anchoring (1). The higher-order
potential (2) still preserves the inversion symmetry of the cholesteric but also provides secondary easy directions
corresponding to odd multiples of π/2 radians when ζ < −1/2. In particular, ζ = −1 provides surface potential
minima of equal strength at all integer multiples of π/2 radians. The quartic form (2) was generalized by Pieranski
and Jérôme [37] in a study of discontinuous first-order anchoring transitions by introducing a phase angle in the
fourth-order term. McKay [14] employed (2) in a study of the thermal hysteresis of pitchjumps in a planar cholesteric
and discusses how the higher-order term can still alter the pitchjump process even when ζ > −1/2. Apart from an
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initial discussion about the Rapini–Papoular case ζ = 0, here we concentrate on perpendicular easy directions and
ζ ≈ −1.

The aim of this paper is to examine the influence of a bidirectional anchoring potential on the unwinding of a
cholesteric liquid crystal subject to the application of a magnetic field. We adopt the quartic surface energy (2) on
the upper boundary confining a layer of cholesteric while maintaining a strong anchoring condition on the lower
surface. In Sect. 2 we introduce the model for the liquid crystal layer, including the elastic energy density and
total energy per unit area. We then derive the differential equations from which we obtain the director twist across
the layer. Section 3 examines the unwinding of the cholesteric through a series of pitchjumps at critical values
of the field strength. These can be quarter- or half-turn changes in the twist angle depending on the choice of
bidirectional anchoring parameter ζ and the anchoring strength. We show that the influence of the bidirectional
anchoring increases as the anchoring strength increases, although it may still be possible for the unwinding to bypass
intermediate easy axis directions when the magnitude of the field is relatively large and the cholesteric is almost
completely unwound.

2 Model

We consider a cholesteric liquid crystal of thickness d between two boundary plates at z = 0 and z = d. Assuming
that the nematic director lies in the xy-plane and the helical axis is in the z-direction, the director can be described
via

n = (
cosφ(z), sin φ(z), 0

)
, (3)

where φ(z) is the director twist angle measured with respect to the x-axis, as shown in Fig. 1. The liquid crystal is
subject to an in-plane magnetic field H = H(1, 0, 0) of magnitude H(≥ 0).

Combining the magnetic and elastic energy densities, we can express the overall bulk energy density for the
cholesteric [38, Chap. 6] as

wb = 1

2
K2

(
n · ∇ × n − 2π

p

)2 − 1

2
χa(n · H)2 = 1

2
K2

(dφ

dz
− q

)2 − 1

2
χa H2 cos2 φ, (4)

where K2 is the elastic constant associated with twist of the cholesteric and χa is the magnetic anisotropy, here
assumed to be positive so that the liquid crystal director prefers to align with the field. The wavenumber q = 2π/p
is also assumed to be positive so that the cholesteric exhibits a right-handed helix. The natural, or equilibrium, pitch
p is the distance along the helical axis over which the director twists 2π radians in the absence of the applied field
or surface anchoring. On the lower plate at z = 0 we assume that the director is fixed such that φ(0) = 0. At the
upper surface we introduce the bidirectional surface energy (2), where φ represents the twist on the substrate.

Fig. 1 Cholesteric liquid
crystal confined between
two plates at z = 0 and
z = d with its helical axis in
z-direction. The director
twist with respect to the
x-axis direction is φ(z),
while H is the in-plane
magnetic field

123



G. McKay

Combining the bulk and surface energies, we can now construct the total energy of our system per unit area:

W =
d∫

0

wb dz + ws, (5)

where ws is the quartic surface potential (2). Equilibrium profiles for the director twist can be found by minimizing
the total energy W with respect to the angle φ. Before doing this, we first non-dimensionalize (5) by rescaling
z → z/d and introducing a modified total energy

Ŵ = 2d

K2
W =

1∫

0

(dφ

dz
− π q̂

)2 − λ2 cos2 φ dz + 2π

ρ
ŵs ≡

1∫

0

ŵb dz + 2π

ρ
ŵs, (6)

where the dimensionless surface energy ŵs = (
sin2 φ + ζ sin4 φ

)
/2 and φ still represents the director twist on the

upper surface. We have also introduced non-dimensional parameters

ρ = πK2

dτ0
, q̂ = qd

π
, λ2 = d2χa H2

K2
.

Non-negative ρ is a rescaled reciprocal of the anchoring strength, with ρ = 0 corresponding to infinite anchoring.
The parameter q̂ represents the number of half (or π )-twists in a sample of depth d if the director was allowed to
rotate freely on the upper plate (zero anchoring) and the magnetic field is switched off. The helix will attempt to
unwind as the magnetic field strength increases, so the actual number of half-twists exhibited by the cholesteric
may differ from q̂ . In order to focus on the competition between the field strength and surface anchoring, we have
fixed q̂ = 10 in Figs. 2–8. Finally, λ is a measure of the magnitude of the magnetic field relative to the twist elastic
constant.

We calculate the equilibrium twist profiles for the cholesteric by minimizing the energy Ŵ . The Euler–Lagrange
equation derived from (6) is

d2φ

dz2 − λ2 cosφ sin φ = 0, z ∈ (0, 1). (7)

The boundary condition for the twist at the upper plate can also be obtained from calculus of variations [39, Chap. 4],

∂ŵb

∂φ′ + dŵs

dφ
= 0 on z = 1, (8)

where φ′ = dφ/dz. Substituting ŵb and ŵs defined in (6) into (8), we can write the boundary condition for φ
incorporating weak anchoring as

dφ

dz
− π q̂ + π

ρ
sin φ cosφ(1 + 2ζ sin2 φ) = 0 on z = 1. (9)

Equilibrium twist profiles are now solutions of (7) and (9), in conjunction with the condition that the angle vanishes
at z = 0.

Following a procedure similar to that adopted in Kedney and Stewart [3] and Scarfone et al. [20], we can obtain
an implicit form for φ(z) from (7),

F(φ, k)− λz = 0, (10)

where k(> 0) is a constant of integration to be determined,

F(φ, k) =
φ∫

0

dψ
√

k + sin2 ψ
= 1√

k
F

(
φ | − k−1) (11)

and F(φ | m) is the incomplete elliptic integral of the first kind. The limiting value of z = 1 in (10) provides an
implicit form relating k and φ = φ(1), the twist on the upper plate,

F(φ, k)− λ = 0. (12)
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However, if we replace the derivative at z = 1 in (9) by the term derived from (10), we can obtain another expression
for the constant k in terms of φ, namely

k = 1

λ2

(
π q̂ − π

ρ

dŵs

dφ

)2 − sin2 φ. (13)

Together, (12) and (13) provide the constant k and the angle φ corresponding to the chosen non-dimensional
parameters ρ, q̂ and λ. These lead, in turn, to an implicit form for φ(z) from (10).

3 Discussion

In Fig. 2a we plot the constant k obtained from both the implicit form (12) and condition (13) for the simple
Rapini–Papoular energy (1) as φ varies. Note that the graph derived from (13) is restricted to the values of φ that
provide k > 0. Figure 2b represents the non-dimensional energy Ŵ introduced in (6) for the same range of φ, with
the values of k calculated using (12). The intersections of the curves in Fig. 2a correspond to energy extrema in
Fig. 2b. The magnetic field contribution to the total energy is minimized when the director is aligned in directions
which are integer multiples of π radians. Therefore, as the magnetic field strength increases and dominates the
elastic or weak anchoring effects, the cholesteric undergoes a series of transitions as its helix unwinds in an attempt
to align with the magnetic field. Since multiple metastable states can coexist for a given λ, the pitchjumps coincide
with discrete changes in the overall twist of the energy global minimizer. The value of λ chosen in Fig. 2 coincides
with a pitchjump as the helix expels approximately a half (or π )-twist and aligns with the field in more of the cell.
Figure 3 plots the equilibrium twist profiles φ(z) obtained from (10)–(13) for a sequence of critical values of the
parameter λ. In the analysis that follows we refer to quarter- and half-turn changes in the overall twist across the
entire cell, i.e. variations in the director angle at the upper plate. In reality, these jumps will not be exact integer
multiples of π/2 or π radians, respectively, because of the weak anchoring. We can categorize each profile in Figs. 2
and 3 by n, the number of half-twists it possesses, or simply φ/π , rounded to the nearest integer multiple of 0.5. For

(a)

(b)

Fig. 2 a Constant of integration k derived from implicit Eq. (12) (solid line) and boundary condition (13) (dashed line) as angle φ
varies, with λ = 32.58, ρ = 0.1, ζ = 0 and q̂ = 10. b Energy Ŵ , where k is calculated using the implicit form (12). Intersections of
k-curves coincide with energy extrema and allow us to calculate the energy profile φ(z) via (10)
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Fig. 3 Unwinding of director twist φ(z) at specific values of
parameter λ with ρ = 0.1, ζ = 0 and q̂ = 10. In each case, the
chosen λ corresponds to a critical value where the helix expels
a half-twist as the cholesteric unwinds. For each profile, n rep-
resents the number of half-twists rounded to the nearest integer
multiple of 0.5

Fig. 4 Azimuthal twist angles at upper plate for variable para-
meter λ, with ρ = 0.1, ζ = 0 and q̂ = 10. As the field strength
increases, the global minimum energy state expels (approximate)
half-twists and the cholesteric helix unwinds. The cascade of
pitchjumps from n = 4 to n = 0 takes place over a very short
interval when λ is large and the helix is nearly unwound. Note, as
seen in Fig. 3, the twist angles at the upper surface are close but
not equal to integer multiples of π radians because of the weak
anchoring condition

example, the pitchjump at λ = 32.58 corresponds to a transition from an n = 10 to an n = 9 state. Figure 4 shows
the full cascade of transitions as the field strength increases until the cholesteric is virtually completely unwound,
although a small residual twist remains at the upper surface for the n = 0 state due to the finite surface energy
and elastic effects. As the magnetic field strength is increased even further, this residual surface twist will decrease
towards zero.

The quadratic term in the surface energy (2) is minimized when the surface twist aligns at an integer multiple
of π radians, in a fashion similar to the director in the bulk of the liquid crystal cell when acted upon by the field.
However, if we introduce bidirectional surface anchoring by including the quartic term in (2) for ζ < −1/2, then
the new intermediate surface energy minima at odd multiples of π/2 radians will compete with the magnetic field
alignment. Figure 5 shows the intersections of the k-curves and the corresponding energy Ŵ in the presence of
bidirectional anchoring with ζ = −1. The oscillations in the curve obtained from (13) result in intermediate twist
profiles and secondary metastable states corresponding to n = 10.5, 9.5, etc. This is illustrated further in Fig. 6 for
contrasting values of the surface anchoring parameter ρ. For the relatively strong anchoring condition (ρ = 10−4),
most of the intermediate metastable states act as the global energy minimizer at some stage as λ increases. The
step unwinding of the cholesteric occurs in π/2 pitchjumps until the liquid crystal is almost fully unwound, with
only the final intermediate states n = 3.5 to n = 0.5 skipped when λ is large. Significantly, for the weaker surface
anchoring ρ = 10−2, a reduced number of the intermediate twists play a role in the cascade of pitchjumps. At higher
magnetic fields, the cholesteric bypasses the secondary easy axis directions and unwinds in an extended series of
half- instead of quarter-twist pitchjumps at the upper surface.

Figure 7 examines the influence of the anchoring strength in determining whether the director twist will bypass
one or more of the intermediate metastable states as the helix unwinds. Critical values of λ are plotted for each
pitchjump transition and variable ρ. The branches of Fig. 7 demarcate the regions in (λ, ρ) space corresponding to
the different n-states. For a fixed ρ, we can determine the sequence of unwound twists as λ increases in a manner
similar to that in Figs. 4 and 6. We observe from Fig. 7 that the intermediate states at odd multiples of π/2 radians
play a diminishing role as ρ increases. When the anchoring strength is relatively weak, the magnetic and bulk elastic
terms dominate the energy of the system, especially for large field strengths. The field prefers to align at integer
multiples of π radians and, consequently, the surface energy can no longer constrain the upper surface twist to an
angle close to a secondary easy axis direction. As a result, helix unwinding takes place via a series of half-twist
pitchjumps focussed on the integer n states. For mid-strength anchoring, quarter-turn pitchjumps may occur initially
as the helix unwinds but are bypassed at higher fields, as also shown previously in Fig. 6.
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(a)

(b)

Fig. 5 a Constant of integration k derived from implicit Eq. (12) (solid line) and boundary condition (13) (dashed line) as angle φ
varies, with λ = 29.50, ρ = 0.1, ζ = −1 and q̂ = 10. b Energy Ŵ , where k is calculated using implicit form (12). Oscillations in
k-curve obtained from (13) result in secondary metastable states

Fig. 6 Azimuthal twist
angles at upper plate for
ζ = −1, q̂ = 10 and
variable λ. The surface twist
now displays values close to
the secondary easy
directions at odd multiples
of π/2 radians as the helix
untwists. When ρ = 10−4,
the secondary pitchjumps
persist until the final
transitions when λ is large.
For ρ = 10−2, which
corresponds to weaker
anchoring, only the
higher-twist intermediate
states are observed as the
helix unwinds
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Fig. 7 Regions in (λ, ρ) space where different n-states act as global energy minimum for ζ = −1, q̂ = 10. The states n = 1, 2 and 3
occur in the small region before the helix unwinds but cannot be distinguished in the figure

(a) (b)

Fig. 8 Regions in (λ, ρ) space where different n-states are global energy minimum for q̂ = 10: a ζ = −1.01; b ζ = −1.1. As ζ
decreases, the secondary states dominate the cholesteric transition to a planar nematic

The surface energy term in (6) is very sensitive to the choice of ζ , as can be seen by re-expressing ŵs in the form

ŵs = 1

8
sin 2φ + 1

2
(ζ + 1) sin4 φ. (14)

The first term in (14) vanishes for all easy directions φ = kπ/2 (k ∈ Z). However, when combined with the 2π/ρ
coefficient in (6), the second term can be significantly large in magnitude for φ close to the secondary easy axes (odd
integer k). Generally, if ζ is slightly greater than −1, then the surface energy contribution to (6) is positive for all
secondary states and large enough to ensure that these secondary states never act as global energy minima, i.e. the
n = 9.5, 8.5 . . . regions in Fig. 7 shrink very rapidly as ζ increases from −1. Conversely, the secondary states
encroach further into (λ, ρ) space, even if ζ is decreased by only a relatively small amount. In Fig. 8 we consider
the effect of a small decrease in the bidirectional coefficient from ζ = −1, biasing the surface energy towards the
secondary directions at odd multiples of π/2 radians on the boundary. Unlike the situation for ζ ≥ −1, this bias can
lead to equilibrium states with n = 10.5 when the magnetic field is relatively weak and n = 0.5 when λ is large and
the cholesteric is almost fully unwound. More significantly, it is the secondary states which now play the dominant
role and across a much wider range of ρ than when ζ = −1. Integer n states that characterize the influence of the
magnetic field are excluded from the unwinding process until ρ and λ are relatively large. Figures 7 and 8 both
illustrate that the secondary easy axis directions are prevalent when the anchoring strength is relatively large. More
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significantly, the figures also show how even very small changes in the nature of the surface potential, with a shift
in bias from primary to secondary easy axis directions, can affect the manner in which the helix unwinds.

4 Conclusion

We have examined the unwinding of a planar cholesteric liquid crystal subject to bidirectional anchoring on its
upper plate. By determining the states which minimize the total free energy described in terms of the director
twist angle, we have modelled the unwinding of the cholesteric helix via a series of near quarter- or half-turn
pitchjumps depending on the choice of bidirectional coefficient. In the transition to the nematic state, a competition
exists between the twist angles favoured by the magnetic field and the easy axis directions imposed by the surface
potential. Secondary easy axes can influence the unwinding when the surface anchoring strength is relatively strong
and when the potential is biased towards secondary twisted states via the coefficient ζ . Although not considered
here, the behaviour of a cholesteric as it transitions to the nematic state could also be altered by a surface treatment
which leads to non-perpendicular easy directions. Another method of controlling the nature of the helix as it unwinds
could be the application of an in-plane magnetic field that is tilted with respect to the easy axes, as considered by
Scarfone et al. [20] for Rapini–Papoular anchoring. For example, consider a magnetic field that is tilted at a specific
angle and whose strength is increased until the cholesteric helix has unwound. If the tilt angle is then changed by
a small amount and the field strength decreased, then the helix rewinding may be characteristically different from
the unwinding process because the field is more closely aligned with a different easy direction.
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