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ABSTRACT

Motivation: Core sets are necessary to ensure that access to useful

alleles or characteristics retained in genebanks is guaranteed. We

have successfully developed a computational tool named

‘PowerCore’ that aims to support the development of core sets by

reducing the redundancy of useful alleles and thus enhancing their

richness.

Results: The program, using a new approach completely different

from any other previous methodologies, selects entries of core sets

by the advanced M (maximization) strategy implemented through a

modified heuristic algorithm. The developed core set has been

validated to retain all characteristics for qualitative traits and all

classes for quantitative ones. PowerCore effectively selected the

accessions with higher diversity representing the entire coverage of

variables and gave a 100% reproducible list of entries whenever

repeated.

Availability: PowerCore software uses the .NET Framework Version

1.1 environment which is freely available for the MS Windows

platform. The files can be downloaded from http://genebank.rda.go.

kr/powercore/. The distribution of the package includes executable

programs, sample data and a user manual.

Contact: yjpark@rda.go.kr

1 INTRODUCTION

Useful alleles, especially those contributing to valuable

agronomic traits are often conserved in genebanks worldwide.

The potential use of these large collections could be greatly

enhanced by constituting subsamples also known as core

collections or core sets (Basigalup et al., 1995; Brown, 1989;

Franco et al., 2006; Frankel and Brown, 1984; Upadhyaya

et al., 2006). Effective deployment of useful alleles from

genebanks has been made possible especially with the

recent technological revolution brought upon by genomic

and bioinformatics tools. Allele mining exploits the

deoxyribonucleic acid (DNA) sequence of one genotype to

isolate useful alleles from related genotypes (Latha et al., 2004).

Discovering the full diversity of available genes and their

agronomic significance will allow genebanks to achieve their

full potential thus contributing to sustainable development

by deployment of the right alleles in the right places at the right

time (Hamilton and McNally, 2005).
Over the years, tremendous progress has been achieved using

different methodologies including the stratified random sam-

pling, and such methodologies have been successfully applied to

develop core collections for various uses (Balfourier et al., 1998;

Chandra et al., 2002; Hu et al., 2000; Peeters and Martinelli,

1989; Spagnoletti and Qualset, 1993). Several other strategies

have also been proposed for use including proportional alloca-

tion, log frequency allocation and the constant allocation

(Brown, 1989; Spagnoletti and Qualset, 1993; van Hintum

et al., 2000). New trials such as theM (maximization) strategy or

nested selection methods (Bataillon et al., 1996; Marita et al.,

2002; Schoen and Brown, 1993) have been conducted to select

specific combinations of accessions that include complete cover-

age and retention. Similarly, using iterative procedures of select-

ing the highest diversity among subsets by the criterion of

richness and the highest sum of squares of active variables based

on the M strategy, the MSTRAT program was developed and

released (Gouesnard et al., 2001). To date, the M strategy is

clearly the most powerful function for selecting entries with the

most diverse alleles and eliminating redundancy that comes

from non-informative alleles, which arise from co-ancestry and

certain assertive mating systems in establishing core sets (Franco

et al., 2006).
As a solution to the traveling salesman problem (TSP), the

‘heuristic algorithm’ was designed for selecting the optimal

pathway to the last goal following the Karg–Thompson’s

algorithm (Karg and Thompson, 1965) and later improved to

not only search the best increment for each node, but also the

next-best increment (Raymond, 1969). Various applications

of the heuristic algorithm include the FASTA program for

sequence comparison (Altschul et al., 1990), GeneMark for the

ab initio gene search program (Besemer and Borodovsky, 2005),
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GenAlignRefine for the multiple sequence alignment program

(Wang and Lefkowitz, 2005) and Bounded Sparse Dynamic

Programming (BSDP) (Slater and Birney, 2005). The heuristic

algorithm was also applied in developing the core set for the

Arabidopsis collection using single nucleotide polymorphism

(SNP) data (McKhann et al., 2004).

Here, we present a new software application named

PowerCore, which can be applied for developing core sets

using the advanced M strategy and possessing the power to

represent all alleles or classes of their observations.

2 DESIGN CONCEPT

Scales for variables expressing traits of genetic accessions vary

based on their characteristics and measurement methods. These

are the nominal, ordinal, interval and ratio scales. The interval

and ratio scales may categorize and divide variants into an

appropriate interval. They can then be categorized under the

ordinal scale. The ordinal scale may also be used as a nominal

scale as shown in Figure 1.
When one converts several variables expressing traits of

accessions into one nominal scale according to the method

above, one may assume a set, SA
v , with elements of all nominal

values in the set of the whole accessions, A with respect to a

certain variable, v (certain repetitive nominal values may

occupy an element of SA
v ). SA

V is a set with elements

SA
v1
,SA

v2
, . . . ,SA

vm
, with respect to variables v1, v2, . . . , vm. In

other words, SA
V¼ {SA

v | v2 all the variables of the whole

accessions}. In addition, if SA
v ¼SB

v for all the variables, then let

SA
V be equal to SB

V (SA
V¼SB

V) (Fig. 1).
At this point, one may consider subsets, Asub, of the set of

whole accessions, A, in which SA
V¼SAsub

V . Each Asub exhibits all

nominal values of each variable expressed by the set A, one of

which with the minimum number of elements can be

represented as a core collection. Thus, the problem in finding

the representative accessions with the minimum number of

accessions may be expressed as the problem of finding an Asub

with the minimum number of elements out of every Asub

sufficing SA
V¼SAsub

V .
To find an Asub where SA

V¼SAsub

V with the approach above,

one may create an empty set, E, and add a certain appropriate

accession to E recursively until SE
V and SA

V become equal. This

process may also be described as the shortest-path problem.

If the set, E, contains no element, then it is in the initial state.

If SE
V and SA

V are equal to each other, then it becomes the final

state, or in other words, the goal. Selecting an entry and adding

it to E is an expansion of a node. Thus, reaching the goal with

the minimum number of elements in E using this method

involves minimizing the number of nodes from the initial node

to the goal. However, this search process does not consider the

order of accessions. For example, suppose there are accessions,

a, b and c, then six different paths may exist when adding to E.

These paths all have the same significance: a!b! c,

a! c!b, b! a! c, b! c! a, c! a!b and c!b! a.

In other words, if one of them were to be expanded in a search

process, it would not be necessary to expand the rest.
The problem in finding a core collection, therefore, may be

expressed as searching for the shortest path with the minimum

number of nodes in the search process above which may be

discovered using the A*-algorithm.
If an optimal path exists from the initial node, s, to the final

node via a node, n, one may define the cost of the optimal path

from s to n as g*(n) and the cost of the optimal path from n to

the final node as h*(n). Then, let us define the sum of g*(n) and

h*(n) as f*(n) as follows:

f �ðnÞ ¼ g�ðnÞ þ h�ðnÞ:

A graph search using an evaluation function is known as the

A*-algorithm in which an evaluation function, f, is a measure of

f * expressed as follows:

f ðnÞ ¼ gðnÞ þ hðnÞ:

In this equation, g and h are measures of g*(n) and h*(n),

respectively. An algorithm sufficing h(n)� h*(n) for all nodes, n,

at all times is called the A*-algorithm, it always finds the goal if

it exists, and this path is the shortest path (Hart et al., 1968).
When implementing a search for a core collection using the

graph search with an evaluation function, f, one may define g(n)

as the number of accessions added to E, and h(n) as the number

of accessions added to E until the final state, the goal is

reached. Then, one may evaluate h^(n) sufficing h^(n)� h*(n) as

follows.
One may denote a set, SA�E

V ¼ SA
V � SE

V, from all the sets,

SA�E
v1

,SA�E
v2

, . . . ,SA�E
vm

with respect to all variables, v1, v2, . . . , vm
that may find a relative complement, SA�E

v ¼ SA
v � SE

v , for each

variable. Then,

h^(n)¼ the maximum number of elements in SA�E
v among the

elements, SA�E
v1

,SA�E
v2

, . . . ,SA�E
vm

in SA�E
V .

An accession may not have more than one nominal value per

variable so that the number of nodes from a node, n, to the

goal, must be equal to or greater than h^(n). Thus, h^(n)� h*(n)

for all nodes if and only if h^(n) is defined as above. The graph

search using an evaluation function, f^(n)¼ g(n)þ h^(n), is an

A*-algorithm. This search finds E sufficing SA
V ¼ SE

V with

the minimum number of accessions if the set, E exists, as shown

in Figure 1.

Fig. 1. A set of nominal values of variables expressing traits of genetic

accessions (a: accession; v: variable; n: nominal value).
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3 IMPLEMENTATION

A core collection obtained using the above search method h^(n)

guarantees the shortest path, but many nodes are expected to

expand in this search. Furthermore, the number of accessions

in the actual analysis is extremely high and implementation

of the above search method cannot assure expected results in

the limited time given. Thus, another method was seen as

necessary to find an optimal path, close to the shortest path in

plausible time, which may not guarantee the shortest path to

the goal. In order to implement the new method, the search

method was modified.
Considering the search method to find the entry for core

collection in the previous section, an element in A was added to

E as each node expands. Thus, one will always find the goal as

the depth of nodes expands with the number of elements in

A. In other words, all nodes lead to the goal. Also within

a path, a deeper node is closer to the goal.
With this characteristic in mind, priority was given to

h^(n) of deeper nodes and the comparison of their values.

Then, a node with the minimum value was selected and

expanded.
One may consider SA

v a set A of all the accessions as its

elements with respect to a variable, v. If SA
v ¼ {d1, d2, . . . , dk}, and

another set, SA
v,t with ordered pairs (d1, t1), (d2, t2), . . . , (dk, tk)

as its elements where the first element of each pair is

an element of SA
v and the second element is an integer, t,

denoted as,
SA
v,t¼ {(d1, t1), (d2, t2), . . . , (dk, tk)}. In this set, d1, d2, . . . , dk

are defined as items in SA
v,t and t1, t2, . . . , tk as the ‘filled values’

of each item. Each ordered pair is a ‘diversity cell’.
In particular, SA

v,t is defined as SA
v,0when all the filled values,

t1, t2, . . . , tk, are 0. That is, SA
v,0¼ {(d1, 0), (d2, 0), ... . . , (dk, 0)}.

Then, we denote a set with elements SA
v1,t

, SA
v2,t

. . . ,SA
vm ,t

with

respect to all the variables, v1, v2, . . . vm as SA
V,t and a set with

elements SA
v1,0

, SA
v2,0

, . . . ,SA
vm ,0

as SA
V,0.

For an accession, a (if a2A), we define SA
V,tþ a as follows

and express it as ‘filling an accession, a, into SA
V,t’.

SA
T,tþ a:

for each v in all the variables of whole accessions

if ðvðaÞ,tÞ 2 SA
v,t,t tþ 1ðvðaÞ ¼ the value of a variable,v,

for an accession, aÞ

Here, we express (v(a), t)2SA
v,t as ‘filling an item, v(a), in SA

v,t’.
The search process is as follows:

(1) Create an SA
V,t sufficing SA

V,t¼SA
V,0for the set of the whole

accessions, A.

(2) Create an empty set, E.

(3) Create a list, N.

for each e (if e2A – E)

N(e) SA
V,tþ e (N(e) must be a value of the item,

e, in N)

(4) . Calculate h^(n):

create a list, H.
for each e (if e2A – E)

create a list, NUMBER.
for each v in all the variables of the whole accessions

find the number of ordered pairs sufficing t¼ 0 among
every ordered pair, (d, t) and NUMBER(v) 
(d, t)2SA

v,t 2N(e)
(NUMBER(v) must be a value of the item, v,

in NUMBER).
H(e) NUMBER is the maximum value (H(e) must be a

value of the item, e, in H).

(5) Select an item, e, with H(e) as its minimum value,

E E[ {e} (if several e’s exist, then one e is selected
randomly).

SA
V,t  SA

V,t þ e

(6) T 0

for each SA
v,t (if S

A
v,t 2 SA

V,t)

for each (d, t) (if (d, t)2SA
v,t)

T Tþ t

(7) If T 6¼ 0, then proceed to Step (3).

In this search, Step (3) is a process of expanding children
nodes by adding an entry, e, from a parent node and the Step
(4) is a process of evaluating the expanded node with an
evaluation function, h^(n).

However, evaluating nodes with h^(n) above will create
several nodes with the same depth minimizing h^(n) so that a
path will be randomly selected. We have modified and

improved the method above to evaluate an optimal node with
more information instead of by random selection as follows.
One may define the number of filled values sufficing t¼ 0

among every diversity cell, (dv, t) in SA
v,t (if S

A
v,t 2 SA

V,t) of a node
as empty (SA

V,t). Selecting a node with an empty value (SA
V,t) at

its minimum does not guarantee the shortest path, but the
empty (SA

V,t) value only decreases in the above search process.

We have modified the above search to select a node with the
minimum empty (SA

V,t) value with respect to the goal when
several nodes exist with h^(n) at their minimum.

If several nodes exist with the minimum empty (SA
V,t) value,

we will select a node to which an accession, e, with less
abundant nominal value among accessions in E is added

to E. We have defined an added accession to expand a
node as e. The value of a variable item, v, in this newly
added accession might be expressed as v(e). Thus, SA

v,t(e) now

expresses the value of t which suffices (v(e),t)2SA
v,t (e2A).

If e has variables, v1, v2, . . . , vm, then it may be defined as
an overlap.

Overlap ðSA
V,t,eÞ ¼

SA
v1,t
ðeÞ þ SA

v2,t
ðeÞ þ . . .þ SA

vm,t
ðeÞ

m

The values of SA
v1,t
ðeÞ, SA

v2,t
ðeÞ, . . . ,SA

vm ,t
ðeÞ increase by one as an

accession with the nominal values of v1(e), v2(e), . . . , vm(e) fill in
SA
V,t. This overlap (SA

V,t, e) can be an indicator of how many
repetitive nominal values e, in average, has for each variable in

a set, E. In other words, e, on average, has nominal values for
each variable unlike other accessions in a set, E, as the value
overlap (SA

V,t, e) gets smaller. Therefore, a node with the
minimum overlap (SA

V,t, e) will be selected to take an accession

with less abundant values in a set, E.
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If several nodes with the minimum overlap (SA
V,t, e) value

exist, then a node with an accession with higher rarity is

selected using predefined values of rarity of accessions in the

whole accessions, A. Before executing the above search process,

SA
V,t  SA

V,t þ a must be performed for every a sufficing a2A.

Then, lists P and D are created to find values for

P(a) overlap(SA
V,t, a) and DðaÞ  1=m

P
v jS

A
v,tðaÞ � PðaÞj for

every a (if a2A) in advance (P(a) and D(a) are values of an

element, a, in lists P and D, respectively).
P(a) can serve as an indicator for the rarity of an accession,

a and D(a) indicates the degree of deviation of rarity for

each nominal value of a, with respect to the whole accession

set, A. The node with the minimum P(a) value will be selected

to take an accession with high rarity.

When several nodes with the minimum value of P(a)

exist, the node with the highest D(a) value will be chosen.

That selects an accession with an exceptionally rare char-

acteristic in a specific trait rather than an accession with

evenly distributed rare characteristics in all traits among

the accessions with the same P(a) value: the higher the D(a)

value, the higher the deviation of rarity of a’s nominal value

with respect to each variable. Hence, nominal values with

high rarity with respect to certain variables are concentrated in

such accessions.
The new program’s source code is written in Microsoft C#

and compiled with Microsoft Visual Studio .NET 2003.

The program has been tested in the Microsoft Windows XP

environment, and the specifications of the testing computer

include a 1.5GHz Intel mobile processor and a 1GB RAM.

4 VALIDATION

4.1 Analysis with statistical indicators

Ten sets of 100 virtual accessions were created, each with four

nominal variables and three continuous variables as materials

for the analysis. Within the PowerCore program, a component

divided intervals of continuous variables to nominalize them;

the continuous variables in this analysis were automatically

classified into different categories based on Sturges’ rule

(Sturges, 1926).

k ¼ 1þ log2 n:

ðn : number of observed accessionsÞ

The search using the PowerCore was heuristic. The core set was

generated via this search by calculating the mean difference

(MD,%), variance difference (VD,%), coincidence rate (CR,%)

and variable rate (VR,%) for continuous variables and

computing a frequency distribution for each variable (Hu

et al., 2000).

MDð%Þ ¼
1

m

Xm

j¼1

jMe�Mcj

Mc
� 100

(Me: Mean of entire collection, Mc: Mean of core collection)

VDð%Þ ¼
1

m

Xm

j¼1

jVe� Vcj

Vc
� 100

(Ve: Variance of entire collection, Vc: Variance of core
collection)

CRð%Þ ¼
1

m

Xm

j¼1

Rc

Re
� 100

(Re: Range of entire collection, Rc: Range of core collection)

VRð%Þ ¼
1

m

Xm

j¼1

CVc

CVe
� 100

(CVe: coefficient of variation of entire collection, CVc:

coefficient of variation of core collection, m: number of traits)

4.2 Comparative analysis with a non-heuristic random

method to retain whole diversity cells, provided

from PowerCore

The basis for generating the core collection using PowerCore is

the nominalization of continuous variables. Nominalizing these

variables led to the decrease in number of accessions collected

in a core collection which was considered necessary in
performing the heuristic search through its evaluation function

using the given data.

A comparative analysis was performed with the non-heuristic

random search wherein no prior information was required for
the generation of the core set. The procedure for the random

search was as follows:

(1) SA
V,t sufficing SA

V,t ¼ SA
V,0 for a set of the whole accessions,

A is created.

(2) An empty set, E is created

(3) for each v in all the variables of the whole accessions

for each item d in SA
v,t

if SA
v,t(d) equals to 0 (SA

v,t(d) must be a filled value of d)

then an element from e A – E is selected to fill d randomly

E E [ feg

This random search was performed 10 times to compute the

average values of the MD, VD, CR and VR, and frequency

distribution.
One hundred virtual accessions were created, each with four

nominal variables and three continuous variables for the

analysis.

5 RESULTS AND DISCUSSION

5.1 Results of analysis with statistical indicators

The number of accessions, MD, VD, CR and VR values for the

core collection are displayed in Table 1. PowerCore selected an

average of 11 out of 100 virtual accessions thus reducing the

number of accessions by 89% for the entire collection.
MD exhibits the difference in averages of accessions between

the core set and the entire collection. MD values in Table 1

show that the mean of the core collections selected by

‘PowerCore’ is similar to the mean of the entire collection

(Table 1).
VD displays the difference in distribution. VD values in

Table 1 show that the variance of the core collections selected
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by ‘PowerCore’ is rather different from the variance for the

entire collection. It was noted that the VD values fluctuated

among the different sets.
VR allows a comparison between the coefficient of variation

values existing in the core collections and the entire collection
and determines how well it is being represented in the core sets.

VR values in Table 1 show an average value of 67.1%.
CR indicates whether the distribution ranges of each variable

in the core set are well represented when compared to the entire
collection. Results obtained (Table 1) show that the average CR

value is 93.8%. In order for core collections to represent the
whole accessions, some researchers claim that the CR value

should be �80% (Hu et al., 2000).
MD, VD and VR are used to measure the statistical

consistency between the core and entire collections. Core

collections do not aim for statistical consistency such as
average or variation but they seek to cover the genetic diversity

of the entire collection. Thus, even well-collected core sets
would not show high scores of these statistical indexes based on

values attained for average and variation. Moreover, these
methods can only be applied to continuous variables.

Particular attention needs to be given to the high CR of
core collections as indicated in Table 1. Compared to the

other statistical indicators used in this study, PowerCore

specifically indicates an exceptionally high CR value for
the core sets. Once classification of the continuous variables

is performed by PowerCore, the software takes into account
all classes, without omission of any of its variables.

Thus, PowerCore possesses the capability to cover all the

distribution ranges of each class. However, 100% CR value is
not attained in Table 1. The reason is that in the case of

continuous variables wherein classes are generated, PowerCore
would only require the least number of accessions from

each class.
In view of the above, we suggest a new indicator, ‘Coverage’,

which can be used to evaluate a core set for its coverage of
variables.

Coverageð%Þ ¼
1

m

Xm

j¼1

Dc

De
� 100

Where Dc is number of classes occupied in core collection

and De is number of classes occupied in entire accessions in

each character and m is the number of variables. The core sets

resulted by PowerCore show 100% coverage of variables

without any deviations. This suggests PowerCore maintains all

the diversity present in each class.

5.2 Results of the comparative analysis with a

non-heuristic random method, implemented

within PowerCore

The heuristic search selected 10 out of 100 virtual accessions

compared to the random search which selected an average of

17.1 accessions. Table 2 shows the MD, VD, CR and VR values

obtained using the heuristic search of PowerCore and the

random method. The frequency distribution of core collections

with respect to each variable is exhibited in Figure 2. The CR

value obtained using the random method was slightly higher

since more accessions were selected. Heuristic search always

resulted in the same value as the number of accessions selected

in every try is the same. However, the random search does not

provide the same results whenever repeated.
The frequency distribution of core collections with respect to

each variable is exhibited in Figure 2. The heuristic method

used in PowerCore and the random method are both well

illustrated in Figure 2 wherein the core subsets generated

contain intervals of values for the whole collection with respect

to each variable. Figure 2 also shows that the categorization

Table 2. Values of variables for core collections using the heuristic and

random searches

Search type Number of

accessions

MD(%) VD(%) CR(%) VR(%)

Heuristic 10 5.82 1.45 87.5 96.8

Random 17.1 5.17 4.19 91.7 99.0

Table 1. Average values for core collections using heuristic search

Set Number

of accessions

MD (%) VD (%) CR (%) VR (%) Coverage (%)

1 13 1.75 33.2 95.0 68.5 100

2 11 7.70 33.7 95.9 71.6 100

3 10 2.85 37.8 93.3 64.0 100

4 10 1.66 28.7 90.3 72.6 100

5 12 3.09 24.3 90.5 77.3 100

6 9 9.25 42.4 88.9 62.1 100

7 10 2.99 42.0 98.3 56.3 100

8 11 4.43 37.7 100 59.6 100

9 12 6.52 32.1 95.7 72.9 100

10 11 2.07 33.4 90.1 65.9 100

Average 11� 1.20 4.23� 2.68 34.5� 5.65 93.8� 3.79 67.1� 6.68 100� 0.00

Mean Difference (MD), Variance Difference (VD), Coincidence Rate (CR) and the Variable Rate (VR).
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values for each variable of these core collections exhibited

extremely low frequency as opposed to the entire collection.

If one considers the frequency of each categorization value

from the frequency distribution in Figure 2 as accessions with

repetitive values, an extremely small or negligible frequency

indicates these have been significantly discarded from the core

collections.

The heuristic and random searches have greatly reduced the

number of accessions, since nominalizing continuous variables

in the preparation procedures for establishment of core

collections efficiently discards unnecessary accessions. It was

noted, however that the heuristic search reduces the size of core

collections to �60% as compared to the random search. The

results attained confirms that the modified A*-algorithm of
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PowerCore is more effective than a random search that does

not apply the evaluation function for determining the shortest
search path.

5.3 Comparison of the heuristic method (PowerCore)

with other conventional methods using real

rice data sets

To compare the selecting efficiency of PowerCore to Random

(R-), Proportional (P-) and MSTRAT methods, two different
real rice data sets were used. The phenotype set comprise of 28

quantitative and 11 qualitative traits while the SSR (simple

sequence repeat) set includes 18 loci. Both independent sets

contain 1000 accessions, respectively. It has been proven that

PowerCore has better efficiency than any other conventional

methods when the same number of entries was selected in the
comparison core sets (Table 3). The core sets developed by

PowerCore, retained all different alleles or intervals which two

different entire collections possess in both the phenotype and

SSR sets of real rice data, ensuring 100% of coverage in

developed core sets relative to entire collections. MSTRAT was

revealed to be the best method in the coverage rate (94.8% for
phenotype and 88.9% for SSRs), compared with the other

conventional methods (Table 3).
Basically, PowerCore implements the heuristic algorithm for

selecting candidate entries by calculating the costs to reach the

goal. So, even if the users repeat the selecting of subsets using

the same data, the same list of entries is generated. This is

another benefit for users of PowerCore.

6 CONCLUSION

PowerCore is a completely new approach differing from any
other previous methodologies, which effectively simplifies the

generation process of a core set while significantly cutting

down the number of core entries, maintaining 100% of the

diversity as categorical variables. For continuous variables,

100% diversity is achieved based on precision of classification.
PowerCore is applicable to various types of genomic data
including SNPs.
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