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Abstract 

While free radicals and inflammation constitute major routes of neuronal injury occurring 

in neurodegenerative diseases, neither antioxidants nor nonsteroidal anti-inflammatory drugs 

(NSAIDs) have shown significant efficacy in human clinical trials. To explore the possibility 

that concurrent blockade of free radicals and PGE2-mediated inflammation might constitute a 

safe and effective therapeutic approach to certain neurodegenerative diseases, we have 

developed 2-hydroxy-5-[2-(4-trifluoromethylphenyl)-ethylaminobezoic acid (AAD-2004) as a 

derivative of aspirin. AAD-2004 completely removed free radicals at 50 nM as a potent spin 

trapping molecule and inhibited microsomal prostaglandin E synthase-1 (mPGES-1) with an 

IC50 of 230 nM. Oral administration of AAD-2004 blocked free radical formation, PGE2 

formation, and microglial activation in the spinal motor neurons of SOD1G93A mice. As a 

consequence, AAD-2004 reduced autophagosome formation, axonopathy, and motor neuron 

degeneration, improving motor function and increasing life span. In these assays, AAD-2004 

was superior to ibuprofen or riluzole. Gastric bleeding was not induced by AAD-2004 even at 

a dose 400-fold higher than that required to obtain maximal therapeutic efficacy in SOD1G93A 

mice. Targeting both mPGES-1 and free radicals may be a promising approach to reduce 

neurodegeneration in ALS and possibly other neurodegenerative diseases.  



 

 

Introduction 

Extensive evidence supports the central role of free radicals in the pathogenesis of 

amyotrophic lateral sclerosis (ALS) as well as other neurodegenerative diseases such as 

Alzheimer’s disease (AD) and Parkinson’s disease (PD). Elevated oxidative products of 

protein, DNA, and lipid have been reported in the brain, spinal cord, and cerebrospinal fluid 

(CSF) in subjects with ALS 1-5. Transgenic (SOD1G93A) mice that overexpress mutant SOD1 

in familial ALS show motor neuron degeneration, movement deficit, and decreased survival 

rates 6. In SOD1G93A mice, oxidative stress is induced in spinal cord regions known to 

undergo the pathological changes in ALS 7-8. Excess accumulation of pro-oxidants such as 

iron is also observed and expected to cause neurodegeneration in familial as well as sporadic 

forms of ALS 9-10. A causative role for oxidative stress in the neurodegenerative pathology is 

supported by experimental findings that administration of antioxidants reduces neurological 

deficits apparent in SOD1G93A mice 8,11-12. However, two clinical trials using oral 

supplementation of vitamin E at either 500 mg/d for 12 months or 1500 mg/d for 18 months 

produced no beneficial effect on mortality in ALS patients 13-14. The therapeutic potential of 

anti-oxidants such as vitamin E, N-acetylcysteine and Coenzyme Q10 that were advanced to 

clinical trial for ALS was limited by side effects and poor BBB permeability 15-17. Anti-

oxidants that are capable of effectively and safely removing free radicals in the nervous 

system are needed to conduct a proof of concept study for ALS patients.  

Inflammation constitutes an additional contributor to the neurodegenerative events 

observed in ALS. Inflammatory responses such as PGE2, tumor necrosis factor-alpha (TNF-α), 

and C-reactive protein are significantly elevated in serum and CSF of patients with ALS 18-20. 

In particular, COX-2, the inducible isoform of cyclooxygenase (COX), is induced in neurons, 

microglia, astrocytes, and endothelial cells in both SOD1G93A mice and patients with ALS 21-22. 

COX-2 is thought to mediate inflammation and neuronal injury in the spinal cord of 

SOD1G93A mice through the generation of PGE2 
23. Celecoxib, a selective COX-2 inhibitor, 



 

 

reduced levels of PGE2 and neuronal death in the spinal cord and prolonged survival in 

SOD1G93A mice 24. However, chronic treatment with the maximum dosage of celecoxib (800 

mg/d) for 12 months improved neither motor function nor survival in ALS patients 25. As 

levels of PGE2, a surrogate marker for the pharmacological action of celecoxib, were not 

reduced in the cerebrospinal fluid of ALS patients treated with celecoxib, it remained to be 

resolved if selective COX-2 inhibitors would attenuate PGE2, neurodegeneration, and 

neurological deficits in ALS patients in the absence of adverse gastric and cardiovascular 

effects.  

While antioxidants or anti-inflammatory drugs (e.g. COX inhibitors) have reduced disease 

progression in SOD1G93A mice, a combination approach targeting both free radicals and 

inflammation may synergistically improve motor function and survival. In the SOD1G93A mice, 

combined treatment of the selective COX-2 inhibitors, celecoxib or rofecoxib, with creatine, a 

mitochondrial transition pore stabilizer shown to reduce oxidative stress in SOD1G93A mice 26, 

resulted in additive neuroproection and survival compared to the COX-2 inhibitors alone 27. A 

phase II clinical trial of combination therapy for ALS patients revealed that the combination 

of celecoxib and creatine produced slower deterioration in the ALS Functional Rating Scale-

Revised than the historical controls or the combination of minocycline and creatine 28. Thus, 

concurrent blockade of free radicals and PGE2-mediated inflammation may provide better 

therapeutic outcome than monotherapy for intervention of neurodegenerative process and 

neurological deficits in ALS patients. We have investigated the premise that a single agent 

combining the anti-inflammatory attributes of aspirin with powerful anti-oxidant efficacy 

would constitute an effective disease modifying therapeutic for ALS, based on the 

additive/synergistic neuroprotective effects of these two actions. We took a structural lead 

from sulfasalazine, and developed synthetic derivatives conjugated to 5-aminosalicylate that 

prevent free radical formation, as well as inflammation without causing gastric damage. 

AAD-2004 was chosen as a final drug candidate, based upon safety and efficacy profile 



 

 

through multiple in vitro and in vivo screening processes.  

 

Result 

AAD-2004 blocks free radical neurotoxicity as a potent spin trapping molecule. 

Mixed cortical cell cultures containing neurons and glia produced reactive oxygen species 

(ROS) within 4 h and widespread neuronal death over 24 h after continuous exposure to 50 

μM Fe2+, a transition metal ion catalyzing hydroxyl radicals from H2O2. Concurrent addition 

of 1 μM AAD-2004 blocked Fe2+-induced ROS production and neuronal death (Fig. 1a). The 

efficacy and potency of AAD-2004 were compared to those of antioxidants that were included 

in clinical trials for treatment of neurodegenerative diseases. Vitamin E, a free radical 

scavenger, attenuated Fe2+ neurotoxicity in a dose-dependent manner (IC50 = 22.03 μM). 

Estrogen and melatonin revealed an IC50 of 2.41 μM and 311.6 μM in reducing Fe2+ 

neurotoxicity, respectively. However, administration of acetyl-L-carnitine up to 1 mM slightly 

reduced Fe2+-induced neuronal death. In contrast, AAD-2004 showed IC50 of 0.097 μM and 

all but completely blocked Fe2+ neurotoxicity even at 0.3 μM (Fig. 1b), suggesting that AAD-

2004 has better efficacy and potency against free radical neurotoxicity than the other 

antioxidants examined. AAD-2004 also protected against free radical injury by DL-

buthionine-[S,R]-sulfoximine, a glutathione-depleting agent, and sodium nitroprusside, a 

nitric oxide donor (Unpublished data). As salicylate and acetyl salicylate (aspirin) can 

scavenge free radicals at millimolar concentrations 29-30, the antioxidant action of AAD-2004 

may be attributable to direct scavenging of free radicals. Salicylate, aspirin, and sulfasalazine 

slightly reduced levels of 2,2-diphenyl-1-picrylhydrazyl (DPPH), a stable free radical that is 

widely used to analyze radical scavenging activity. Compared to the limited scavenging action 

of the salicylates, AAD-2004 rapidly reacted with DPPH with potency higher than vitamin E, 

suggesting that AAD-2004 is a potent free radical scavenger (Fig. 1c). The free radical 

scavenging action of AAD-2004 was further examined using the spectroscopic technique of 



 

 

electron spin resonance (ESR). 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), a spin trapping 

agent, reacted with hydroxyl radicals, producing the ESR spectra of DMPO-OH (Fig. 1d). The 

addition of AAD-2004 reduced levels of DMPO-OH in a dose-dependent manner. The ESR 

spectra of DMPO-OH were almost completely blocked in the presence of AAD-2004 as low 

as 50 nM, demonstrating that AAD-2004 is a potent spin trapping molecule.  

AAD-2004 is an mPGES-1 inhibitor and does not cause gastric damage.   

 AAD-2004 was derived from aspirin and thus expected to prevent inflammation as a 

COX inhibitor. The IC50 values of AAD-2004 for ovine COX-1 and COX-2 were 334.75 μM 

and 21.47 μM, respectively (Fig. 2a). However, AAD-2004 prevented PGE2 production 

following exposure of BV2 cells to lipopolysaccharide (LPS) with IC50 of 1.4 μM (Fig. 2b). 

This implies that AAD-2004 inhibits PGE2 production through another target besides 

cyclooxygenases. We examined the possibility that AAD-2004 would inhibit mPGES-1, an 

isomerase converting COX-derived PGH2 to PGE2 
31. Addition of PGH2 in extracts of LPS-

treated BV2 cells resulted in increased PGE2 production in the presence of excess 

indomethacin, a dual COX-1/COX-2 inhibitor, compared to those of control BV2 cells, 

suggesting that the bacterial endotoxin induces mPGES-1-mediated PGE2 production as 

previously reported 32. AAD-2004 inhibited the conversion of PGH2 to PGE2 by mPGES-1 

with an IC50 of 0.23 μM (Fig. 2c). Oral administration of 200 mg/kg ibuprofen and 300 mg/kg 

aspirin caused severe gastric damage 24 h later (Fig. 2d). Celecoxib, a selective COX-2 

inhibitor, also produced mild gastric damage at an extremely high dose of 1000 mg/kg. 

However, oral administration of 1000 mg/kg AAD-2004 did not damage gastric mucosal 

membrane. Interestingly, aspirin-induced gastric damage was prevented by co-administration 

of trolox, a vitamin E analogue. This implies that AAD-2004 prevents inflammation with 

reduced gastric risk possibly due to selectivity to mPGES-1 and spin-trapping property.    

AAD-2004 blocks oxidative stress and inflammation in SOD1G93A mice. 



 

 

As previously reported 8, SOD1G93A mice revealed marked oxidative stress in motor 

neurons of the lumbar spinal cord at 10 weeks of age as evident by increased 

immunoreactivity to nitrotyrosine and 8-OHdG (Fig. 3a). Administration of AAD-2004 (i.p., 

b.i.d) from 8 weeks of age alleviated motor function deficits and increased survival in 

SOD1G93A mice. Maximal effects were observed from doses of 2.5 mg/kg (supplementary fig. 

1). In mice, the oral administration of 2.5 mg/kg AAD-2004 showed an area under the curve 

(AUC) of 7.7 μg.h/mL which was 2-fold higher than the intraperitoneal administration of 2.5 

mg/kg AAD-2004 (Unpublished data). Thus, the pharmacological effects of AAD-2004 were 

examined by the oral administration of 2.5 mg/kg (b.i.d.) in SOD1G93A mice. The 

administration of AAD-2004 from 8 weeks of age significantly blocked elevated levels of 

nitrotyrosine and 8-OHdG in the lumbar spinal cord of SOD1G93A mice at 10 weeks of age 

(Fig. 3a,b). The number of microglia immunoreactive to Iba-1 (ionized calcium-binding 

adaptor molecule-1), a marker of activated microglia/macrophage, and Iba-1 expression were 

increased in the ventral horn of the lumber spinal cord of SOD1G93A mice at 16 weeks of age 

compared to the wild type (Fig. 4a). The presence of Iba-1 positive microglia was prevented 

by AAD-2004 as evidenced by a decrease in immunoreactivity in spinal cord sections as well 

as Western blots (Fig. 4a-c). In addition, immunohistofluorescence studies revealed that the 

expression of mPGES-1 was increased throughout the lumbar ventral horn of SOD1G93A mice 

at 16 weeks of age (Fig. 4d-f). PGE2 levels were significantly increased in the lumbar spinal 

cord and also in plasma of SOD1G93A mice, which was significantly reduced following 

administration of AAD-2004 (Fig. 4g). As the maximum plasma concentration of AAD-2004 

is approximately 8.1 μM following the oral administration of 2.5 mg/kg in SOD1G93A mice 

(unpublished data), AAD-2004 is expected to prevent inflammation in the lumbar spinal cord 

of SOD1G93A mice through blockade of mPGES-1.  

AAD-2004 prevents motor neuron degeneration, axonal damage, and autophagosome 



 

 

formation in the lumbar spinal cord of SOD1G93A mice. 

Widespread motor neuron degeneration was observed in the ventral horn of the lumbar 

spinal cord in 16-week-old SOD1G93A mice. The administration of 2.5 mg/kg AAD-2004 

beginning 8 weeks of age significantly prevented the loss of spinal motor neurons in the 

SOD1G93A mice compared to vehicle treatment (Fig. 5a, b). Immunohistochemistry with the 

tau-5 antibody further demonstrated degradation of cell bodies and axons originating from the 

motor neurons (Fig. 5c). Such degenerative changes were significantly ameliorated by the 

administration of AAD-2004 (Fig. 5c, d). However, the axonopathy was not prevented by 

ibuprofen or riluzole, a disease-modifying neuroprotectant known to reduce glutamate 

neurotoxicity and used as the only approved treatment for ALS. The conversion of LC3-I to 

LC3-II, microtubule-associated protein 1 light chain 3-II, known as a marker for 

autophagosome formation, was induced in the lumbar spinal cord of 16-week-old SOD1G93A 

mice as previously reported 33. The conversion to LC3-II was not observed in SOD1G93A mice 

treated with AAD-2004 (Fig. 5e, f). In addition, administration of AAD-2004 also blocked the 

abnormal aggregation of mutant SOD1 observed in the lumbar spinal cord of SOD1G93A mice 

(Fig. 5g).  

AAD-2004 shows better beneficial effects than ibuprofen or riluzole in SOD1G93A mice. 

Finally, we carried out a study comparing the functional efficacy of AAD-2004 with that 

of riluzole or ibuprofen, a nonselective COX inhibitor that inhibited microglial activation and 

PGE2 production in the lumbar spinal cord of SOD1G93A mice (unpublished data). As reported 

34, SOD1G93A mice that orally received a maximally effective dose of riluzole revealed 

significant improvement in motor function and survival (Fig. 6). Administration of 25 mg/kg 

ibuprofen improved motor function and extended life span in SOD1G93A mice comparable to 

riluzole. SOD1G93A mice treated with 2.5 mg/kg AAD-2004 showed significantly better motor 

function and survival relative to riluzole or ibuprofen. The onset of Rotarod deficits was 



 

 

significantly delayed by 12% and 15.6% in the riluzole and ibuprofen -treated groups, 

respectively, as compared with the control group. The disease onset was further delayed by 36% 

in SOD1G93A mice treated with AAD-2004 (Fig. 6e). Survival was extended by 8.2%, 9.4%, 

and 21% in the riluzole, ibuprofen, or AAD-2004-treated groups. While there was no 

difference in the disease onset and survival between the riluzole and ibuprofen groups, the 

AAD-2004 group significantly improved motor performance and survival compared to the 

riluzole or ibuprofen groups.  

 

Discussion 

AAD-2004, a dual function drug derived from aspirin and sulfasalazine, has been 

developed to protect against both free radicals and PGE2-mediated inflammation associated 

with certain forms of neurodegeneration in the central nervous system (CNS). AAD-2004 is a 

potent spin trapping molecule and mPGES-1 inhibitor effective at nanomolar concentrations. 

Administration of AAD-2004 improves motor function and survival in SOD1G93A mice with a 

maximally effective dose of 2.5 mg/kg while no gastric damage was observed following oral 

administration of doses as high as 1000 mg/kg. AAD-2004 blocks oxidative stress and 

inflammation through inhibition of mPGES-1-mediated PGE2 production in SOD1G93A mice, 

which results in blockade of neuronal death, axonopathy, and autophagosome formation 

normally observed in the lumbar spinal cord of these mice. As a consequence, blockade of 

oxidative stress and mPGES-1-mediated inflammation significantly extended disease onset 

and survival compared to riluzole and ibuprofen.  

Salicylate (2-hydroxybenzoate) can react with hydroxyl radical to produce catecol, 2,3-

dihydroxybenzoate, and 2,5-duhydroxybenzoate that act as a free radical trap 40. However, 

salicylate weakly reacts with DDPH and does not reduce Fe2+-induced free radical injury up 

to 1 mM, suggesting that salicylate is a poor anti-oxidant. Interestingly, sulfasalazine and 5-



 

 

aminosalicylate prevented Fe2+-induced free radical neurotoxicity at ~ 30 μM 41. The 

antioxidant effects of sulfasalazine and 5-aminosalicylate appear to be related with p-amine 

relative to the hydroxyl group of salicylate that increases stability of the peroxyl radical 30. 

Furthermore, the anti-oxidant potency and efficacy of AAD-2004 were remarkably increased 

with the electron-rich moiety (4-trifluoromethylpheny group) linked to p-amine that favors 

reaction with hydroxyl radical.  

In light of anti-inflammatory actions of salicylates as inhibitors of cyclooxygenases, we 

reasoned that AAD-2004 would inhibit COX-2. AAD-2004 was indeed a direct COX-2 

selective inhibitor with IC50 of 21.47 μM, but reduced LPS-induced PGE2 production with 

IC50 of 1.4 μM in BV2 cells. This led us to examine mPGES-1, an inducible terminal 

isomerase catalyzing PGE2 biosynthesis, as a potential target of AAD-2004. AAD-2004 

reduced activity of mPGES-1 with IC50 of 0.23 μM in extracts of LPS-treated BV2 cells. Thus, 

AAD-2004 is expected to selectively reduce PGE2 production as an mPGES-1 inhibitor at 

nanomolar concentrations while it prevents production of PGI2 as well as PGE2 as a moderate 

COX-2 selective inhibitor at high doses (≥20 μM).  

mPGES-1 mediates inflammatory responses in the CNS as well as peripheral 

inflammation 32. Expression of mPGES-1 was sparsely detectable in normal brain but 

markedly increased in brain endothelial cells and the paraventricular nucleus of the 

hypothalamus during fever, arthritis, and burn injury in rodents 42-45. Genetic deletion of 

mPGES-1 was shown to reduce levels of PGE2 in the CSF and fever following exposure to 

peripheral LPS injection 46, suggesting that mPGES-1-dependent PGE2 production is a 

mediator of CNS inflammation. Increased expression of mPGES-1 was also observed in 

neurons, astrocytes, and microglia as well as endothelial cells in postmortem brain of AD 47. 

We found that levels of PGE2 and mPGES-1 were significantly increased in the lumbar spinal 

cord of SOD1G93A mice. The latter was observed in neurons, astrocytes, microglia, and 

endothelial cells in the ventral horn undergoing widespread neuronal death and inflammation 



 

 

in SOD1G93A mice (Unpublished data). The plasma concentration profiles of AAD-2004 after 

single or 4-week oral administration of 2.5 mg/kg show a maximal concentration of ~ 2.7 

μg/ml (~ 8 μM) within 30 min after the final dosing and blood-brain barrier (BBB) 

permeability of AAD-2004 is 3 – 5 % in mouse and rat. Therefore, it can be suggested that 

AAD-2004 prevents inflammation in SOD1G93A mice primarily by inhibiting mPGES-1-

mdiated PGE2 production in the spinal cord.   

As an mPGES-1 inhibitor selectively lowering PGE2 production, AAD-2004 appears to 

show better safety than conventional NSAIDs including selective COX-2 inhibitors that cause 

the risk of cardiovascular infarction and thrombosis by preventing production of vascular 

prostacyclin (PGI2) as well as adverse gastrointestinal events48. The pharmacological property 

of AAD-2004 as a spin trapping molecule provides an additional safety profile. This is 

supported by recent reports demonstrating that anti-oxidants or free radical scavengers such as 

vitamin E, melatonin, DL-alpha-tocopherol, and L carnitine protect against NSAIDs-induced 

gastric injuries in rats 36, 49-51. In line with this, oral administration of trolox dramatically 

attenuates aspirin-induced gastric bleeding in rat. Thus, the dual pharmacological properties 

of AAD-2004 are appropriate for intervention of chronic PGE2-mediated inflammation and 

free radical production in the CNS with reduced adverse effects.  

Although either anti-oxidants or NSAIDs improve motor function and prolonged life span 

in SOD1G93A mice, none of them have shown significant benefits in the translational clinical 

studies for ALS patients 52-53. Such unsatisfactory outcomes may be attributable to low 

numbers of patients and short duration of the trials, but may also be associated with low 

permeability of anti-oxidants through the BBB and adverse effects of NSAIDs that limit 

pharmacological action of anti-oxidants or NSAIDs in the CNS 54-55. It is of note that 

combined treatment of celecoxib and creatine improves motor function in a randomized 

clinical trial phase II of ALS patients as well as SOD1G93A mice 29, suggesting better efficacy 

of combined antioxidant and NSAID therapy than monotherapy. AAD-2004 blocked free 



 

 

radical production and PGE2-mediated inflammatory responses induced in the spinal cord of 

SOD1G93A mice. Compared to beneficial effects of ibuprofen or riluzole in SOD1G93A mice, 

AAD-2004 significantly improved survival and onset of motor function deficit approximately 

up to 2 to 3-fold. Thus, concurrent blockade of free radicals and mPGES-1-mediated PGE2 

production with AAD-2004 has potential to improve neurological function and survival in 

ALS patients with a better safety profile compared to NSAIDs.  

 AAD-2004 and ibuprofen attenuate motor neuron death in the ventral horn of the 

lumbar spinal cord as riluzole or other COX-2 inhibitors do in SOD1G93A mice 25. The loss of 

ventral root axons correlates well with motor function deficit and appears before motor 

neuron death in SOD1G93A mice and ALS patients 56. While neither riluzole nor ibuprofen 

attenuated degeneration of ventral root axons, AAD-2004 significantly protected the axons in 

SOD1G93A mice. Impaired autophagy has been proposed as a cause of progressive dystrophy 

and degeneration of axons 37-38, 57. Administration of AAD-2004 prevented levels of LC3-II 

and SOD1 aggregates that were increased in the ventral horn of lumbar spinal cord in 

SOD1G93A mice. AAD-2004 prevents abnormal protein aggregates and autophagosome 

formation possibly by blocking free radicals and PGE2-mediated inflammation. In support of 

this, iron or mitochondrial reactive oxygen species are shown to induce autophagy and 

autophagic cell death 58-59. By inhibiting abnormal protein aggregation and axonopathy, AAD-

2004 produces better motor function and survival in SOD1G93A mice than COX-2 inhibitors or 

riluzole.  

Undoubtedly, free radicals and PGE2-dependant inflammation contribute to progression of 

neuronal damage and neurological deficit in ALS. Neither antioxidants nor NSAIDs, however, 

showed significant efficacy in ALS patients due to poor BBB permeability and drug-related 

adverse effects at therapeutic doses. AAD-2004 blocks free radical production and 

inflammation in vitro and in SOD1G93A mice by scavenging free radicals as a spin trapping 

molecule and preventing PGE2 production as an mPGES-1 inhibitor. With the dual 



 

 

pharmacological actions, AAD-2004 did not cause gastric damage at a dose 400-fold higher 

than efficacy doses in SOD1G93A mice, prevented protein aggregation and axonopathy, and 

improved neurological function and survival better than NSAIDs or riluzole. A phase I study 

of AAD-2004 in healthy human volunteers has demonstrated a safety profile that AAD-2004 

does not produce serious adverse events at doses higher than the therapeutic target dose 

determined in SOD1G93A mice (unpublished data). The present findings support the need for a 

novel medication that exhibits concurrent blockade of free radicals and mPGES-1 as a means 

to combat devastating neuronal cell loss in ALS and also has implications for the treatment of 

other neurodegenerative diseases including AD and PD.  



 

 

Methods 

Methods and any associated references are available in the online version of the paper at 

http://www.nature.com/naturemedicine/. 

 Note: Supplementary information is available on the Nature Medicine website. 
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Online Methods 

 

Electron spin resonance (ESR) spin trapping assay   

Hydroxyl radicals were generated using a Fenton reaction system and reacted with 5,5-

dimethyl-1-pyrroline-N-oxide (DMPO), a spin trapping agent. The ESR spectra of the 

resultant DMPO-OH adducts were measured as described 60. In brief, DMPO-OH adducts 



 

 

were produced by reacting 50 μM FeSO4, 1 mM H2O2, and 1 mΜ DMPO in a PBS (pH 7.4) 

for 2.5 m. The ESR spectra were recorded using an ESR spectrometer (JEOL, JES-TE300, 

Tokyo Japan) set at the following conditions: microwave power 1.01 mW, modulation 

frequency 100 kHz, modulation amplitute 5.0 mT, response time 30 s, received gain 4.0 x100, 

scan constant 200 s, and cell temperature 24°C. 

 

mPGES-1 activity assay 

mPGES-1 activity in cell lysates was analyzed by measuring the conversion of PGH2 to 

PGE2 as previously reported 35. mPGES-1 activities in cell lysates were measured by 

assessment of the conversion of PGH2 to PGE2. The cells were scraped from the dishes and 

disrupted by sonication (10 s, three times, at 1 m intervals) in 250 μL 0.2 M Tris-HCL, pH8.0. 

After centrifugation of the sonicates at 15000 rpm for 10 m at 4 °C, the supernatant fluids 

were used as the enzyme source. An aliquot of each lysate (90 μg protein equivalents) was 

incubated with 2 μg PGH2 for 30 s at 24 °C in 100 μM 0.1 M Tris-HCL, pH 8.0, containing 2 

mM glutathione and 14 μM indomethacin. After terminating the reaction by the addition of 

100 mM FeCl2, PGE2 contents in the supernatant fluids were quantified using an EIA kit 

(Cayman Chemical Cat. No. 514010 for PGE2,). 

 

Mice and treatment regimens 

Animal care and treatment were in compliance with a protocol approved by the 

institutional animal care committee. SOD1G93A mice carrying the G93A human SOD1 

mutation were obtained from the Jackson Laboratory (Bar Harbor, ME). Male G93A 

transgenic mice were crossbred with B6SJLF1/J hybrid females as previously described 6. 

Mice were orally, peritoneally, or dietary treated with AAD-2004, ibuprofen, or riluzole 

beginning at 8 weeks of age. Nontransgenic litter mates were used as controls. 



 

 

Evaluation of motor function  

Motor function was evaluated by analysis of Rotarod and PaGE as previously reported 8 . 

(Supplementary Methods) 

 

Stereological analysis of motor neuron survival 

The whole lumbar spinal segment (L1~L5) were coronally cut into thickness of 40 μm 

using Cryocut Microtome (Leica Microsystems, Wetzlar). Neuronal death was analyzed by 

staining every 10th section with 0.5% cresyl violet and counting viable motor neurons larger 

than 20 μm in the ventral lumbar region. To estimate the total number of motor neuron, the 

optical fractionator method was used. (Supplementary methods)  

 

Preparation of 2-hydroxy-5-[2-(4-trifluoromethylphenyl)ethylamino]benzoic acid 

(AAD-2004) 

AAD-2004 was synthesized at Zhejian Avilive Laboratories Ac., Ltd. (China). In brief, 

methyl 2-hydroxy-5-[2-(4-trifluoromethylphenyl) ethylamino] benzoate was produced by 

condensation of methyl 5-aminosalicylate and 2-(4-trifluoromethylphenyl) ethyl 

methanesulfonate in the presence of triethylamine and then hydrolyzed.  

  

Statistical analysis 

All data performed on cell cultures and animals are expressed as the mean ± S.E.M. An 

independent-samples t-test was used to compare two samples. Analysis of ANOVA and the 

Student Newman-Keuls test were used for multiple comparisons. Survival data are analyzed 

by means of Kaplan-Meier survival curve. All analyses were calculated using the SPSS 

version 12.0 from windows. Statistical significance was set at p < 0.05 
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Figure legend 

Figure 1 AAD-2004 is a potent spin trapping molecule. 

(a) Upper panel: Fluorescence photomicrographs showing 2’,7’-dichlorofluorescein (DCF), 

the oxidation product of 2’,7’-dichlorodihydrofluorescein (DCDHF), in cortical cell cultures 

(DIV 12 – 14) after 4 h exposure to a sham control or 50 µM Fe2+, alone (Fe2+) or with 1 µM 

AAD-2004. Bottom panel: Phase contrast photomicrographs of cortical cell cultures after 16 h 

exposure. Note Fe2+-induced neuronal cell degeneration (arrows) sensitive to AAD-2004. (b) 

Cortical cell cultures (DIV 12 - 14) were exposed to 50 μM Fe2+ for 24 h, alone or with the 

indicated doses of AAD-2004, vitamin E, melatonin, estrogen, or acetyl-L-carnitine. Neuronal 

death was analyzed 24 h later by measuring LDH efflux into the bathing media (n = 4 – 24 

culture wells per condition). (c) Free radical scavenging action was analyzed by measuring 

the reduction of DPPH with addition of AAD-2004, sulfasalazine, salicylic acid, aspirin, or 

vitamin E (n = 3 per condition). (d) The ESR spectra of DMPO-OH adducts were obtained 

from the reaction of hydroxyl radicals and DMPO, alone (Control) or with addition of AAD-

2004.  

 

Figure 2 AAD-2004 inhibits mPGES-1 activity without producing gastric damage. 

(a) IC50 values of AAD-2004 against COX-1 and COX-2 determined using a colorimetric 

ovine COX inhibitor screening assay. (b,c) BV2 cells were exposed to 1 μg/ml LPS for 24 h, 

alone or in the presence of AAD-2004. (b) Levels of PGE2 were analyzed by an enzyme 

immunoassay and scaled to LPS-treated group (=100%) (n = 8 cultures for each condition). (c) 

mPGES-1 activity was analyzed by measuring PGE2 converted from PGH2 in BV2 cell 

lysates added with vehicle (=100%) or AAD-2004 (n = 4 cultures for each condition). (d) 

Representative photomicrographs of rat stomach 24 h after the oral administration of vehicle, 

200 mg/kg ibuprofen, 1000 mg/kg celecoxib, 1000 mg/kg AAD-2004, 300 mg/kg aspirin, or 



 

 

300 mg/kg aspirin plus 100 mg/kg trolox.  

Figure 3 AAD-2004 blocks oxidative stress in SOD1G93A mice.  

(a) Fluorescent and bright-field photomicrographs of lumbar ventral sections immunolabeled 

with an antibody against nitrotyrosine (top panel; scale bar, 20 μm) or 8-OHdG (bottom panel; 

scale bar, 50 μm) in wild type or SOD1G93A mice treated with saline (vehicle) or 2.5 mg/kg 

AAD-2004 (p.o., b.i.d) for 2 weeks starting from 8 weeks of age. (b) Levels of nitrotyrosine 

and 8-OHdG were analyzed by measuring immunofluorescence intensity of nitrotyrosine in 

the lumbar motor neurons (n = 20 sections from 5 mice per condition), and using an enzyme 

immunoassay of 8-OHdG in the lumbar spinal cord (n = 5 mice for each condition). * 

Significant difference from wild type; # significant difference from vehicle, at p < 0.05.  

 

Figure 4 AAD-2004 prevents microglia activation and PGE2 production in SOD1G93A mice.  

(a) Bright-field photomicrographs of lumbar ventral sections stained with an Iba-1 antibody, a 

marker of activated microglia/macrophage, in wild type or SOD1G93A mice treated with saline 

(vehicle) or 2.5 mg/kg AAD-2004 for 8 weeks starting from 8 weeks of age (scale bar, 

100 μm) (b,c) Western blot analysis of Iba-1 in lumbar spinal cord of wild type and SOD1G93A 

mice. Levels of Iba-1 were measured and scaled to those of actin (n = 5 mice for each 

condition) (d) Fluorescent photomicrographs of lumbar ventral sections immunolabeled with 

an mPGES-1 antibody from wild type and SOD1G93A mice (scale bar, 20 μm) (e,f) Western 

blot analysis of mPGES-1 in lumbar spinal cord from wild type and SOD1G93A mice. Levels 

of mPGES-1 were scaled to actin (n = 5 mice for each condition) (g) Levels of PGE2 were 

analyzed in lumbar spinal cord and plasma from wild type and SOD1G93A mice treated with 

vehicle or AAD-2004. * Significant difference from wild type; #, significant difference from 

vehicle, at p < 0.05. 

 

 



 

 

 

Figure 5 AAD-2004 prevents motor neuron degeneration, axonopathy, and autophagosome 

formation in SOD1G93A mice. 

(a,b) (a) Bright-field photomicrographs of the lumbar ventral horn stained with cresyl violet in 

wild type and SOD1G93A mice following 8-week administration of vehicle or 2.5 mg/kg AAD-

2004 from 8 weeks of age (scale bar, 20 μm ) (b) The number of viable motor neurons was 

stereologically analyzed (n = 5~6 mice per group) (c) Fluorescent photomicrographs of the 

lumbar ventral horn immunolabeled with a tau-5 antibody in wild type and SOD1G93A mice 

following 8-week administration of vehicle, 2.5 mg/kg AAD-2004 (p.o., b.i.d), or 25 mg/kg 

ibuprofen (i.p.,b.i.d) from 8 weeks of age (scale bar, 100 μm) (d) Western blot analysis of tau-

5 in lumbar spinal cord from wild type and SOD1G93A mice treated with vehicle, AAD-2004, 

ibuprofen, or riluzole (50 mg/kg/d in diet). Levels of tau-5 were measured and scaled to those 

of actin (n = 5 for each condition) (e,f) Western blot analysis of LC3-I and LC3-II in lumbar 

spinal cord from wild type and SOD1G93A mice treated with vehicle or AAD-2004. Levels of 

LC3-II were scaled to those of actin (n = 5 for each condition) (g) Western blot analysis of 

mutant hSOD1 aggregates in the lumbar spinal cord from wild type (WT) and SOD1G93A mice 

treated with vehicle (veh) or AAD-2004 (AAD). * Significant difference from wild type; #, 

significant difference from vehicle, at p < 0.05.  

 

Figure 6 AAD-2004 shows better motor function and survival than ibuprofen or riluzole in 

SOD1G93A mice 

SOD1G93A mice received vehicle or 25 mg/kg ibuprofen, 2.5 mg/kg AAD-2004, or 50 mg/kg 

riluzole from 8 weeks of age. (a,b) Motor function was analyzed using Rotarod test (a) and 

PaGE test (b) at indicated points of age (n = 14 per group). (c,d) Cumulative probability of 

onset of Rotarod deficits (c) and survival (d). (e) Onset of Rotarod deficits and mortality of 

SOD1G93A mice. ap<0.05 compared with vehicle group; bp<0.05 compared with AAD-2004 



 

 

and with ibuprofen or riluzole. 
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