4,029 research outputs found
Climatological characteristics of high altitude wind shear and lapse rate layers
Indications of the climatological distribution of wind shear and temperature lapse and inversion rates as observed by rawinsonde measurements over the western United States are recorded. Frequencies of the strongest shear, lapse rates, and inversion layer strengths were observed for a 1 year period of record and were tabulated for the lower troposphere, the upper troposphere, and five altitude intervals in the lower stratosphere. Selected bivariate frequencies were also tabulated. Strong wind shears, lapse rates, and inversion are observed less frequently as altitude increases from 175 millibars to 20 millibars. On a seasonal basis the frequencies were higher in winter than in summer except for minor influences due to increased tropopause altitude in summer and the stratospheric wind reversal in the spring and fall
Markov chain techniques for predicting the maximum wind in the maximum dynamic pressure region for launching space vehicles
Markov chain techniques for predicting maximum wind in maximum dynamic pressure region for spacecraft launchin
Revised prediction (estimation) of Cape Kennedy, Florida, wind speed profile
The prediction of the wind profile maximum speed at Cape Kennedy, Florida, is made for any selected calendar data. The prediction is based on a normal probability distribution model with 15 years of smoothed input data and is static in the sense that no dynamic principles of persistence or synoptic features are considered. Comparison with similar predictions based on 6 years of data shows the same general pattern, but the variability decreased with the increase of sample size
Thermopower of Aharonov-Bohm Interferometer with a Quantum Dot
We report on the thermopower of an Aharonov-Bohm interferometer (AB) with a
quantum dot in the Kondo limit. The thermopower is anomalously enhanced due to
the Kondo effect as in heavy fermion systems. In contrast to the bulk systems,
the sign of the thermopower can be changed by adjusting the energy level scheme
or the particle-hole asymmetry of a dot with the gate voltage. Further the
magnitude and even the sign of the thermopower in the AB ring can be changed at
will with varying either magnetic fields or the gate voltages.Comment: 4 pages, 3 figures, accepted for publication in Physical Review
Letter
Offenders' Crime Narratives across Different Types of Crimes
The current study explores the roles offenders see themselves playing during an offence and their relationship to different crime types. One hundred and twenty incarcerated offenders indicated the narrative roles they acted out whilst committing a specific crime they remembered well. The data were subjected to Smallest Space Analysis (SSA) and four
themes were identified: Hero, Professional, Revenger and Victim in line with the recent theoretical framework posited for Narrative Offence Roles (Youngs & Canter, 2012). Further analysis showed that different subsets of crimes were more like to be associated with different narrative offence roles. Hero and Professional were found to be associated with property offences (theft, burglary and shoplifting), drug offences and robbery and Revenger
and Victim were found to be associated with violence, sexual offences and murder. The theoretical implications for understanding crime on the basis of offenders' narrative roles as well as practical implications are discussed
The deconfinement transition of finite density QCD with heavy quarks from strong coupling series
Starting from Wilson's action, we calculate strong coupling series for the
Polyakov loop susceptibility in lattice gauge theories for various small N_\tau
in the thermodynamic limit. Analysing the series with Pad\'e approximants, we
estimate critical couplings and exponents for the deconfinement phase
transition. For SU(2) pure gauge theory our results agree with those from
Monte-Carlo simulations within errors, which for the coarser N_\tau=1,2
lattices are at the percent level. For QCD we include dynamical fermions via a
hopping parameter expansion. On a N_\tau=1 lattice with N_f=1,2,3, we locate
the second order critical point where the deconfinement transition turns into a
crossover. We furthermore determine the behaviour of the critical parameters
with finite chemical potential and find the first order region to shrink with
growing \mu. Our series moreover correctly reflects the known Z(N) transition
at imaginary chemical potential.Comment: 18 pages, 7 figures, typos corrected, version published in JHE
Task-specific transfer of perceptual learning across sensory modalities
It is now widely accepted that primary cortical areas of the brain that were once thought to be sensory-specific undergo significant functional reorganisation following sensory deprivation. For instance, loss of vision or audition leads to the brain areas normally associated with these senses being recruited by the remaining sensory modalities [1]. Despite this, little is known about the rules governing crossmodal plasticity in people who experience typical sensory development, or the potential behavioural consequences. Here, we used a novel perceptual learning paradigm to assess whether the benefits associated with training on a task in one sense transfer to another sense. Participants were randomly assigned to a spatial or temporal task that could be performed visually or aurally, which they practiced for five days; before and after training, we measured discrimination thresholds on all four conditions and calculated the extent of transfer between them. Our results show a clear transfer of learning between sensory modalities; however, generalisation was limited to particular conditions. Specifically, learned improvements on the spatial task transferred from the visual domain to the auditory domain, but not vice versa. Conversely, benefits derived from training on the temporal task transferred from the auditory domain to visual domain, but not vice versa. These results suggest a unidirectional transfer of perceptual learning from dominant to non-dominant sensory modalities and place important constraints on models of multisensory processing and plasticity
Healthcare providers' views on the acceptability of financial incentives for breastfeeding:a qualitative study
BACKGROUND: Despite a gradual increase in breastfeeding rates, overall in the UK there are wide variations, with a trend towards breastfeeding rates at 6–8 weeks remaining below 40% in less affluent areas. While financial incentives have been used with varying success to encourage positive health related behaviour change, there is little research on their use in encouraging breastfeeding. In this paper, we report on healthcare providers’ views around whether using financial incentives in areas with low breastfeeding rates would be acceptable in principle. This research was part of a larger project looking at the development and feasibility testing of a financial incentive scheme for breastfeeding in preparation for a cluster randomised controlled trial. METHODS: Fifty–three healthcare providers were interviewed about their views on financial incentives for breastfeeding. Participants were purposively sampled to include a wide range of experience and roles associated with supporting mothers with infant feeding. Semi-structured individual and group interviews were conducted. Data were analysed thematically drawing on the principles of Framework Analysis. RESULTS: The key theme emerging from healthcare providers’ views on the acceptability of financial incentives for breastfeeding was their possible impact on ‘facilitating or impeding relationships’. Within this theme several additional aspects were discussed: the mother’s relationship with her healthcare provider and services, with her baby and her family, and with the wider community. In addition, a key priority for healthcare providers was that an incentive scheme should not impact negatively on their professional integrity and responsibility towards women. CONCLUSION: Healthcare providers believe that financial incentives could have both positive and negative impacts on a mother’s relationship with her family, baby and healthcare provider. When designing a financial incentive scheme we must take care to minimise the potential negative impacts that have been highlighted, while at the same time recognising the potential positive impacts for women in areas where breastfeeding rates are low
Facts, Values and Quanta
Quantum mechanics is a fundamentally probabilistic theory (at least so far as
the empirical predictions are concerned). It follows that, if one wants to
properly understand quantum mechanics, it is essential to clearly understand
the meaning of probability statements. The interpretation of probability has
excited nearly as much philosophical controversy as the interpretation of
quantum mechanics. 20th century physicists have mostly adopted a frequentist
conception. In this paper it is argued that we ought, instead, to adopt a
logical or Bayesian conception. The paper includes a comparison of the orthodox
and Bayesian theories of statistical inference. It concludes with a few remarks
concerning the implications for the concept of physical reality.Comment: 30 pages, AMS Late
Nanoscale phase-engineering of thermal transport with a Josephson heat modulator
Macroscopic quantum phase coherence has one of its pivotal expressions in the
Josephson effect [1], which manifests itself both in charge [2] and energy
transport [3-5]. The ability to master the amount of heat transferred through
two tunnel-coupled superconductors by tuning their phase difference is the core
of coherent caloritronics [4-6], and is expected to be a key tool in a number
of nanoscience fields, including solid state cooling [7], thermal isolation [8,
9], radiation detection [7], quantum information [10, 11] and thermal logic
[12]. Here we show the realization of the first balanced Josephson heat
modulator [13] designed to offer full control at the nanoscale over the
phase-coherent component of thermal currents. Our device provides
magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a
maximum of the flux-to-temperature transfer coefficient reaching 200 mK per
flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the
exact correspondence in the phase-engineering of charge and heat currents,
breaking ground for advanced caloritronic nanodevices such as thermal splitters
[14], heat pumps [15] and time-dependent electronic engines [16-19].Comment: 6+ pages, 4 color figure
- …
