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ABSTRACT 

The wind fields of the atmospheric c i r cu la t ion  a t  t i m e s  preselit 

formidable hazards t o  t h e  launching of a space vehicle.  

predict ions of t he  maximum wind i n  t h e  maximum dynamic pressure region 

for space vehicles  over Cape Kennedy, Flor ida (10-15 km) are sought 

f o r  =-hour increments through the use of t r a n s i t i o n  matrices of 

operating Markov chains. The concepts of information theory, entropy, 

and Markovity are presented. 

Acceptable 

Empirical t r a n s i t i o n  matrices are examined f o r  s t a t i o n a r i t y  and 

order of Markovity. The Markov models a r e  compared t o  those of per- 

s i s tence  and climatology. For winter and summer seasons predictions 

a r e  made from each model and then ver i f ied .  

se lec ted  from a period d i f fe ren t  from that used t o  construc;t the  models. 

The test data a r e  randomly 

Problems encountered during the  study and recommendations f o r  

fu tu re  inves t iga t ion  are discussed. 



I. INTRODUCTION 

The wind f i e l d s  of the atmospheric c i rcu la t ion  a t  times present 

Though i n  a formidable hazards t o  the  launching of a space vehicle .  

macroscopic sense t h e  atmospheric flow through which a vehicle  passes 

may be r e l a t i v e l y  smooth, the shear from one l e v e l  t o  another may be 

such as t o  adversely a f f e c t  the vehic le ' s  operation. 

may be detrimental t o  t h e  passage of the vehicle.  

Turbulence a l so  

The wind f i e l d s  near ly  always a re  i n  an intensifying o r  d i ss ipa t ing  

stage. These are seldom i n  a steady state stage.  The de f in i t i on  of 

steady state may be given i n  terms of the atmosphere i tself  but would 

be b e t t e r  cast  i n  t e r m s  of t he  vehic le ' s  i n t e rac t ion  with the atmosphere. 

This, sometimes, is  d i f f i c u l t  t o  determine. Therefore, t h i s  study i s  

r e s t r i c t e d  t o  the predict ion of only one feature of t he  wind . f ie ld ,  

namely, the maximum wind i n  t h e  space vehicular dynamic pressure region, 

which i s  considered here t o  be 10 through 15 km. This paper has been 

presented i n  p a r t  as an inv i t ed  paper a t  the Conference on High Alt i tude 

Meteorology and Space Weather a t  Houston, Texas, on March 29-31, 1967. 

The National Aeronautics and Space Administration, Marshall Space 

F l ight  Center, R-AERO-YT, Huntsvil le,  Alabama, (NASA-MSFC-R-AERO-YT) i n  

cooperation with the Environmental Science Serv ices  Administration, 

Environmental Data Service, National Weather Records Center, Asheville, 

North Carolina (ESSA-EDS-NWRC) i s  developing predic t ion  procedures f o r  

features of the wind d i s t r ibu t ions  a t  Cape Kennedy, Flor ida.  

Previous unpublished repor t s  t r e a t :  

A. The s t a t i c  predict ion of the  maximum wind from the  

surface through 27 km, 1161 
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B. The predict ion of t he  wind p r o f i l e  from the  surface 

through 27 km by means of multiple regression techniques 

[14], and 

The prediction of t he  wind p r o f i l e  from the surface 

through 27 km by use of Markov t r ans i t i on  processes [l5]. 

C. 

The input usual ly  has been wind data from e i t h e r  Cape Kennedy, 

Flor ida o r  from the  North American continent wind fields, but i n  one 

instance 500-mb heights and tropopause heights  were examined as 

predictors .  

gation. 

U s e  of other parameters i s  reserved f o r  fu tu re  inves t i -  

The first case above was r e s t r i c t e d  t o  the  determination of da i ly  

means and variances from 6 years of data,  or essen t i a l ly  a sample of 

s ix .  

(harmonic analysis) .  

Predict ions f o r  any date were made on the  bas i s  of t he  mean and 

variance f o r  that date--computed from the harmonics. T e s t s  f o r  nor- 

mal i ty  were made. Then the d is t r ibu t ions  w e r e  assumed t o  be distri- 

buted normally and independently f o r  each date. 

mean plus  o r  minus ce r t a in  increments of the  standard deviation i n  

order t o  provide selected percentages (or  quant i les)  of t h e  d is t r ibu-  

t i on .  For decision purposes, then, a Monte Carlo process can be used 

t o  provide t h e  predicted value. 

These means and variances then  were f i t t ed  by Fourier s e r i e s  

The ins igni f icant  harmonics were eliminated. 

The predict ion i s  t h e  

Figures 1 and 2 show f o r  Cape Kennedy, Florida,  t h e  harmonic 

analyses of t h e  means and variances through the  year f o r  the oooO2 and 

the I2002 observations. 

implies that the re  i s  no difference between t h e  00002 and t h e  I2002 

sets of data. 

"he shape of t h e  corresponding harmonics 

Figure 3 shows the summation of t h e  s ign i f icant  harmonics 

3 



Fig . 1. 

HARMONIC ANALYSIS OF DAILY PROFILE MAXIMUM WIND SPEEDS, SURFACE TO 27 KILOMETERS 

CAPE KENNEDY, FLORIDA, 1956- 1961 
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Fig. 2. 

HARMONIC ANALYSIS OF DAILY MAXIMUM PRORLE W H D  SPEED VARIANCES, SURFACE TO 27 KILOMETERS, 

CAPE KENNEDY, FLORIDA, 1956-1961 P 
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I 

f o r  the mean values and the  variances. 

t he  seasonal march of the mean  values. The dec i les  shown are derived 

The cen t r a l  heavy l i n e  shows 

from the respect ive variances. For each date there i s  an expected 

value, t he  mean, and f o r  that same date the  corresponding expected 

dec i les  have been computed and placed. 

observed data f o r  t he  respective years of 1962 and 1963 superposed on 

Figure 3. 

be a small per iod ic i ty  i n  the  wind. 

later. 

Figures 4 and 5 have ac tua l  

Examination of these f igu res  shows t h a t  there  appears t o  

This feature w i l l  be discussed 

I n  the  second and t h i r d  cases p robab i l i s t i c  envelopes of p r o f i l e s  

from the surface t o  100,000 f ee t  were made. 

described i n  terms of orthogonal polynomials. 

nomial coef f ic ien ts  w e r e  obtained f o r  each p r o f i l e  i n  a set of p ro f i l e s .  

Multiple l i n e a r  regression screening techniques were used with these 

coe f f i c i en t s  t o  obtain predict ive equations f o r  coef f ic ien ts  of fu tu re  

p ro f i l e s .  

t o  construct o r  t o  synthesize p r o f i l e s  o r  envelopes of p ro f i l e s .  

Individual p r o f i l e s  were 

The orthogonal poly- 

These predicted orthogonal polynomial coef f ic ien ts  were used 

The present study i s  r e s t r i c t e d  t o  the  predict ion of maximum 

winds i n  t h e  maximum dynamic pressure region. 

l aye r  above t h e  launching pads of the  space vehicles.  

explored here i s  the Markov process. 

This is  t h e  10-15 km 

The process 

Although predict ion accuracy sought w i l l  be t h e  best, the 

requirements ought t o  be made i n  terms of the  po ten t i a l  ava i lab le  

i n  t h e  data. 

of 1.5 mps o r  a range of plus o r  minus 5 mps does not seem too  

s t r ingent .  However, examination of t he  literature and unpublished 

works ind ica tes  that observational standard e r ro r s  .of 4 t o  7 mps 

A t  first glance a requirement of a standard e r r o r  

7 
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are l ike ly .  Rapp 1491 shows an observational standard e r ro r  of 

about 2 mps when d i f fe ren t  telemetering systems are used from the 

same balloon t r a i n .  Gabriel and Bellucci [23] show a standard e r r o r  

of about 3 mps i n  the  layers  above 300 mb. 

km Anderson [ e ]  indicates  that f o r  GMD-1A [54] equipment instrumental 

e r ro r  i s  about 2.5 mps. A U. S. Navy report  [53] implies that between 

16 and 30 km a standard e r ro r  of about 7 mps e x i s t s  i n  the wind 

measurements. Plagge and Smith [47] ind ica te  a standard e r ro r  of 

about 3 mps a t  a l t i tudes  a t  o r  above 7 km. 

A t  a l t i t u d e s  of 7 t o  15 

Crutcher [ l l ]  shows t h a t  predict ions of 300 mb winds a t  Omaha, 

Nebraska, and other  points  have a standard e r ro r  of about 7 mps. 

Reed [ 5 O ]  shows forecast  standard e r ro r s  of 15 t o  20 m p s  a t  higher 

a l t i t udes .  

U. S. a t  7-8 km (25,000 feet) indicates  pred ic t ive  standard e r ro r s  

which average 7 mps. 

The U. S. Weather Bureau [55] a t  8 locat ions over the  

Unt i l  newer and b e t t e r  instrumentation i s  ava i lab le  a standard 

e r ro r  of measurement of 2 mps seems t o  be the best obtainable.  

then provides an optimum minimum range of plus  and minus 6 mps or a 

t o t a l  range of I2 mps, though it was hoped t h a t  the forecast ing pro- 

cedures could be developed i n  these preliminary s tud ie s  t o  reduce t h e  

standard error t o  a t  l e a s t  5 mps. This would be a reduction i n  va r i -  

ance of 10 t o  1 (one order of magnitude) from that indicated by Reed 

[op. c i t . ] .  

good. 

(an order of magnitude of one-f i f th) .  

This 

Prediction t o  within 10 mps of t h e  observed would be 

This would be a reduction i n  variance of an order of 2 t o  1 

f 

10 



11. OBSECTIW 

Acceptable predict ions of the maximum wind i n  the maximum 

dynamic pressure region f o r  space vehicles  over Cape Kennedy are 

t o  be sought f o r  twelve-hour increments out t o  120 hours through 

the use of t r a n s i t i o n  mat r ices  of an operating Markov process o r  

Markov chain, M. P. o r  M. C. The predict ions f o r  this immediate 

study w i l l  be made only from t h e  Cape Kennedy upper wind data ava i l -  

able from e ight  years of observations. They w i l l  be made within the  

bounds of the  noise imposed by instrumentation, observer e r ror ,  and 

of t he  operating thermodynamic systems. A predict ion standard e r r o r  

of 5 q s  a t  this s tage would be considered a success w i t h  GMD-IA 

Cop. c i t . ]  equipment. 

It i s  a well-established f a c t  that pers is tence i s  a dominant 

feature of weather systems. 

useful  it must be s ign i f icant ly  b e t t e r  than either pers is tence o r  

climatology. Therefore, the  results of some of the  comparisons be- 

tween the  forecas t  models will be included i n  t h i s  paper. 

For a predic t ive  scheme t o  be good and 

111. DATA SOURCE 

A l l  meteorological data of the Environmental Science Services 

Administration (ESSA), A i r  Force and Navy are s tored a t  the  National 

Weather Rxords  Center i n  Asheville, North Carolina. I n  addi t ion t o  

t h e  winds a l o f t  data avai lable  i n  punched card decks there  are decks 

containing winds, temperature, moisture measurements and heights at 

specif ied pressure l eve l s .  

data. Reference manuals which describe these various sets of data are 

ava i lab le  a t  ESSA-EDS-NWRC. 

These data are referred t o  a s  thermodynamic 

The development of predict ion techniques requires  sets of data 



which are s e r i a l l y  complete. 

p l e t e  wind data is  Card Deck 600 produced by ESSA-EDS-NWRC f o r  

NASA-MSFC-R-AERO-YT and NASA Langley f o r  Cape Kanedy, Florida; 

Washington, D.  C . ;  Norfolk, Virginia and Santa Monica, Cal i fornia .  

The periods vary from s i x  years t o  ten.  

The only deck o r  s e t  of s e r i a l l y  com- 

The record fo r  Cape Kennedy contains wind d i rec t ion  and speed i n  

mps a t  1 km leve ls  from the surface through 27 km f o r  the period 

1956-1963. 

provides a sample of only e ight .  

the e ight  years four  observations per day are ava i lab le .  

only two observations per day are used i n  t h i s  study. 

OOOOZ or O3OOZ and the  12002 or 15002 observations. 

This can be considered t o  be a short  t e r m  record that  

For a short  period a t  the end of 

However, 

These are the 

IV. ENTROPY AND INFORMATION THEORY 

Entropy and information theory play a v i t a l  r o l e  i n  the assess- 

ment of the po ten t i a l  of the t r a n s i t i o n  matrices i n  a Markov process. 

It i s  per t inent  t o  discuss these two concepts before discussion of 

the Markov process, though the discussion i s  necessar i ly  b r i e f .  

A.  Entropy 

Getman and Daniels [25] in te rpre ted  the second l a w  of thermo- 

dynamics t o  mean that a state of equilibrium i s  approached by a l l  

systems. 

approach a state of maximum probabi l i ty .  

the ex ten t  t o  which a system i s  random. 

i n  a system; it i s  a measure of energy. 

system passes i n t o  a more random o r  less ordered s t a t e  and conversely, 

it decreases when the  system passes i n t o  a less random o r  more ordered 

s t a t e .  This leads t o  the t h i r d  l a w  of thermodynamics, which says 

I n  other  words there i s  a tendency f o r  a l l  systems t o  

Entropy i s  a measure of 

It i s  a measure of disorder 

Entropy increases when a 

12 



I -  

. 

that the  entropy of a c rys t a l  a t  absolute zero i s  zero. The discus- 

sion above and that which now follows perhaps may be c learer  when 

some analogies a r e  made. 

There i s  a need t o  have some measure, i n t u i t i v e  or otherwise, 

of t he  order and-information i n  the  meteorological systems under 

study. 

from an input t o  an output signal.  

assumed as indicated by Feinstein [lS]. 

communication, a l e t t e r  of the alphabet a t  the  input would have a 

one-to-one correspondence t o  the output l e t t e r .  

necessary that there  be a one-to-one correspondence between elements 

of t h e  sets. The alphabets are  such that a H b  or A - B  a r e  sets and 

a n  element ''a" represents an element ( letter)  of set A {A) w h i l e  "b" 

represents the  corresponding element ( le t ter)  of set B {B).  

b e t i c  le t ter  a t  the  output i s  associated with one and only one alpha- 

b e t i c  le t ter  a t  the input. 

there is  per fec t  communication. As there  i s  complete order--no 

disorder--in this case, t he  entropy of the  communication channel 

would be considered t o  be zero. 

Consider a channel which may be used t o  communicate information 

I n  general, some alphabet is  

For perfect  information and 

It would not be 

An alpha- 

If this occurs with each transmission, 

If there  i s  some noise or disorder i n  the  channel, then the  

entropy of the system would be something greater  than zero. There 

would be some state a t  which the disorder i n  the  system would be a 

maximum; t he  system would be completely random and usable (avai lable)  

information would be n i l .  

Shannon 1513 wrote the  f i r s t  paper on communications u t i l i z i n g  

the concept of information theory. T h i s  paper is now a c lass ic .  

13 



Shannon a l so  employed the  concept of entropy, though he and others  

after h i m  c a l l  t h i s  "equivocation" rather than entropy. 

A measure which satisfies the needs of t h i s  concept i s  given 

below f o r  a s ingle  element; Shannon cop. c i t .  1, Feins te in  [op. c i t .  3 ,  

Kullback C381, Masuyama [43], Baldwin [5]. 

C 

H = -C pi I n  pi 
i=l 

I V . A . l  

where p i s  the probabi l i ty  of the system being i n  some one state,  

-7 i of a number of states. The negative s ign assures the posit iveness 

i 

of the  quantity H, c a l l ed  equivocation o r  entropy. H w i l l  be ca l l ed  

entropy throughout the remainder of t h i s  paper. If p. i s  zero, 

pi I n  pi i s  defined as zero. 

i s  zero; that is, the system i s  f ixed  and there  is  no chance t o  pass 

1 

If there i s  only one state, the entropy 

outs ide the system. For example, i f  i n  the study of maximum winds 

i n  the maximum dynamic pressure region over Cape Kennedy, Flor ida,  

during January, the c l a s s  i n t e r v a l  chosen i s  0-200 mps, and t h e  

maximum wind of all maxima recorded i s  lo3 mps, then the  l ikelihood 

estimate of the entropy 

IV.A.2 

w i l l  be zero. 

and n i s  the  t o t a l  number of observations. I n  t h i s  example 

C f .  = n and c = 1. 

s t a t e .  There i s  no addi t iona l  information t o  be obtained from any 

observation e i the r  p r io r  o r  post t o  the t i m e  of observation. Tota l  

information is  ava i lab le  i n  the NOW condition. There i s  no need t o  

Here, f .  i s  the observed frequency i n  the state "i" 
1 

The system i s  e s s e n t i a l l y  i n  a f ixed  c r y s t a l l i n e  
1 
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c 

observe, t o  study, and t o  predict .  The answer i s  known that the  Kinds 

w i l l  be i n  the one s t a t e  0 t o  200 mps. 

boundary condition. 

T h i s  then s a t i s f i e s  one 

If a l l  p robab i l i t i e s  are equal i n  each and every s t a t e  of two or 

more states, then we f ind  t h e  other bound, which i s  the  maximum entropy, 

t h e  maximum disorder,  or the  lack of any applicable information t o  

permit forecast ing i n t o  one of the categories.  

i s  equal t o  t h e  logarithm of the number of s t a t e s .  

s t a t e  matrix a measure of t h e  maximum disorder or  the  maximum entropy 

would be the  logarithm of t w o .  

from one type of matrix t o  another, the  entropies may be normalized 

by dividing each entropy by i t s  respect ive possible maximum entropy. 

Thus, i n  a two-state matrix, the entropy would be divided by the 

logarithm of 2 w h i l e  the  entropy of a three-s ta te  matrix would be 

divided by the  logarithm of 3 .  

This maximum entropy 

Thus, i n  a two- 

I n  order t o  compare the  entropies 

The concept introduced by Shannon [op. c i t . ]  and others  seems t o  

be satisfied i n t u i t i v e l y  by the entropy concept defined above. 

Masuyama [op. c i t . ]  discusses the  l ikel ihood estimate of entropy, 

i t s  b ia s  and i t s  variance. 

formal variance. T h i s  f a c t  w i l l  be u t i l i z e d  later. 

B. Information Theory 

He shows t h a t  the  entropy behaves a s  a 

Karl Pearson 1463 devised the now well-known and familiar x2 

(Chi-squared) tes t  t o  check the heterogeneity or goodness of f i t  of 

quant i f ied c l a s s i f i e d  data  with respect  t o  some theoi-y specifying 

expected frequencies. Generally, the  n u l l  hypothesis that there  i s  

no difference i s  tes ted .  

15 



Fisher  [21], as a corollary development t o  the maximum l ike-  

lihood c r i t e r ion ,  proposed the  log l ikelihood r a t i o  c r i t e r i o n .  Neyman 

and Pearson [44] developed t h i s  s t i l l  fu r the r  and showed that  -2 I n  A 

w a s  d i s t r ibu ted  as x2 w i t h  appropriate degrees of freedom where A i s  

the  l ikelihood r a t i o  c r i t e r i o n .  Herdan [ 3 0 ]  d r a w s  a t t en t ion  t o  the 

close relat ionship of x2 and H, t h e  entropy. Woolf [ 6 0 ] ,  Kupperman 

[42], Kullback e t  a1 [40] discuss t h i s  h i s to ry  i n  more detai l .  

Another s t a t i s t i c , " I :  has been developed by Kullback and Liebler 
A 

[41], used as 21 by Kullback [op. c i t . ] ,  discussed by Kupperman [op. 

c i t . ] ,  and fur ther  developed by Kullback e t  a1 [40]. Kullback e t  a1 

[40] ca l l ed  the  21 a minimum discriminant information s t a t i s t i c  

(m.d.i. s. ) .  

from a consideration of the channel capacitance i n  communication 

theory. H e  labeled h i s  s t a t i s t i c  "u", ca l l ed  it a dependence capa- 

c i tance s t a t i s t i c  ( d . c . s . ) ,  and used it as 2nu. 

A 

Baldwin [4,5] independently developed the  same s t a t i s t i c  

If p(x) i s  the multinomial d i s t r ibu t ion  on a population of c 

c lasses ,  and p ' (x )  i s  any other  d i s t r ibu t ion  on t h e  population of 

c c lasses  such that every possible observation from p ' ( x )  i s  a l s o  a 

possible  observation from p(x) , then 

I = u = C  p ' ( x >  In 
P X  x + . . . +  x = n  1 C 

IV.B.l 

A 
Kullback e t  a1 [bo] develop a maximum l ike l ihood estimate I i n  

terms of frequencies, and Baldwin [4,5] develops h i s  estimate u i n  

terms of probabi l i t i es .  

the  n-count of t h e  sample, 

When t h i s  l a t te r  quant i ty  is' multiplied by 

16 



P I a I = n u = C f  ln- 
nPa 

A - 
a a  N . B . 2  

' I  

where f 

the  t h e o r e t i c a l . o r  expected frequency of observations i n  the - a-th 

c e l l ,  and the summation is  extended over a l l  c e l l s  a = 1,2, ... 
expected p robab i l i t i e s  pa > 0, and t h e i r  sum over a l l  categories 

Capa = 1. For an fa = 0 t h e  quantity 0 I n  0 i s  defined as zero. 

I = nc is  found t o  be essent ia l ly  equivalent t o  the  -In h of Neyman 

and Pearson [op. c i t .  1. 

i s  the frequency of observations i n  the  a-th c e l l ,  npa i s  a - 

The 

The 
A 

By use of the  approximation 

Kullback e t  a1 1401 show that f o r  pa, fa > 0 

The last expression i n  IV.B.3 i s  

21 and the equivalent s t a t i s t i c s  
A 

IV.B.3 

the  familiar x2 s t a t i s t i c .  Thus, 

2116 and -2lnh are d is t r ibu ted  asymp- 

t o t i c a l l y  as x2 with the  appropriate number of degrees of freedom 

as developed by Fisher [21]. 
A 

Ku [363 discusses the  inflated values of 21 that occur with 

t h e  presence of zero c e l l  frequencies. 

t h e  f a c t  that f o r  an fa = 0, the m.d.i.s. (or d.c.s.)  term on the  

left  side of t he  approximation i n  IV.B.3 i s  zero whereas the corres- 

ponding x2 term on the r igh t  s ide  i s  negative. 

that 21 is. always greater  than x2 when zero c e l l  frequencies occur i n  

T h i s  i n f l a t i o n  results from 

It follows, therefore ,  

A 
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t he  sample. 

subtract ing one from the  computed 21 ( o r  2nu) f o r  each zero c e l l  

frequency i n  order t o  compensate f o r  t he  inf la ted  values. 

correct ion,  however, i s  v a l i d  only i f  there are no more than a 

f e w  c e l l s  with zero frequencies [37]. 

Ku [361 proposes an e q i r i c a l  correct ion f ac to r  of 
A 

T h i s  

The information s t a t i s t i c s  provide the  measure of the transmission 

capabi l i ty  of a communication channel. Perhaps the name selected by 

Baldwin i s  a l i t t l e  more descr ipt ive than t h a t  chosen by Kullback 

e t  a1 [40]. The communication channel described by Fe ins te in  [op. 

c i t . ]  has a ce r t a in  capacitance o r  capabi l i ty  t o  transmit information. 

The channel may have a ce r t a in  noise leve l ,  yet  the re la t ionship  

o r  h i s to ry  (or memory) which e x i s t s  i n  t h e  channel w i l l  cont ro l  the 

amount of usable information which i s  received as an output. The 

word dependence capacity, therefore ,  implies the capacity and the 

memory that i s  operating and which can be u t i l i z e d .  

capacity then i s  i n  pa r t  a measure of the Markovity of t he  system. 

These entropy and information concepts are impl ic i t  

a l l  fu r the r  discussions. 

T h i s  dependence 

throughout 

V.  MARKOVITY AND PROBABILITY MATRICES 

Transi t ional  p robab i l i t i e s  and Markov processes and chains are 

discussed by Kolmogorov [33], F e l l e r  [ l 9 ] ,  Kullback [op. c i t . ] ,  Chung 

[lo],  Dynkin [17], Bi l l ings ley  [7,8],  Keeping [31], Wilks [58], 

Kullback e t  a1 [40] and B a r t l e t t  [6]. Further bibliographic reference 

may be made t o  Bi l l ingsley [ 7 ] ,  who provides 113 references.  

Application of such p robab i l i t i e s  i n  t h e  meteorological f i e l d  

has been made by Andre [3], Gabriel and Neumann [24], Allen e t  a1 [l], 

Caskey [g], 'Weiss [57], Feyerherm and Bark [20], Baldwin [4, 51, 

18 



Wiser 1591, Crutcher and Orovitz [op. c i t . ] ,  Quinlan [MI, Grin- 

gorten [ 29 ] ,  and Godske [26,  27, 283. The above references are 

only a small portion of those avai lable  i n  the l i t e r a t u r e .  

A .  Some Preliminary Arguments 

The Markov phenomenon i n  a continuous d i s t r ibu t ion  i s  ca l led  a 

process. 

i n  general, i s  a continuous pers i s ten t  d i s t r ibu t ion ,  but because 

measurements and t i m e  in te rva ls  e s sen t i a l ly  make it discre te ,  it can 

be thought of as a Markov chain (M. C. ) . 

I n  a d iscre te  d is t r ibu t ion  it is  ca l led  a chain. Weather, 

A Markov process o r  chain (M.P. or  M.C.) has a memory, h i s tory  

influence, o r  pers i s ten t  feature  of m t i m e  periods. 

and i n  many texts the  concept of the Markov process o r  chain involves 

no more than one t i m e  i n t e rva l  of h i s tory  o r  memory. 

t he  system used is that of the m - t h  order. 

an m-th order M.P. o r  M.C. I n  a first order M.C. with a t i m e  period 

of one day, today's weather a f f ec t s  o r  controls tomorrow's weather 

but not day-after-tomorrow's weather. Similarly,  a second order M.C., 

i f  t h e  time in t e rva l  i s  one hour, implies that the weather an hour 

ago and the  weather now both influence o r  control the  weather an 

hour from now. 

month, year, o r  decade. The problem generally w i l l  suggest the 

in t e rva l ( s )  t o  be used. 

I n  many instances 

However, here 

The system i s  ca l led  

The t i m e  i n t e rva l  i s  a rb i t r a ry  and could be a week, 

A process i s  s ta t ionary  i f  i t s  d is t r ibu t ion  does not change even 

thoughthe  sampled data may d i f f e r  from sample t o  sample. 

[34, 353 defines an M.P. o r  M.C. as s ta t ionary  when the conditional 

p robab i l i t i e s  (probabi l i ty  of. an event given a previous event) remain 

f ixed.  

Koopman 

He considers a se r i e s  of successes o r  failures of an a r b i t r a r y  
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event under conditions such t h a t  the probabi l i ty  of success does not 

remain constant from t r i a l  t o  t r i a l .  

the theory of probabi l i ty  d i s t r ibu t ions  i n  related t r ia ls .  Their 

inves t iga t ion  is,based on the works of Koopman [34, 351. 

Wadsworth e t  a1 [56] consider 

An M.P. o r  M.C. may be cyc l ic  i n  that  t he  process v a r i e s  w i t h  

some regular per iodic i ty  o r  r e tu rn  fea ture .  

processes through t h e  year may be expected t o  show a per iodic  feature. 

There could be o ther  per iodic  o r  aper iodic  forcing functions modulating 

these which may be d i f f i c u l t  t o  ident i fy ,  much less t o  i s o l a t e  and t o  

remove. Even i n  the per iodic  case the  required mathematics and 

ar i thmetic  will be cumbersome. The p r inc ipa l  pe r iod ic i t i e s  considered 

i n  the  data used i n  t h i s  inves t iga t ion  are: 

I n  the  realm of weather, 

1. diurna l  

2. shor t  t e r m  (weekly, monthly, . . .) 
3. seasonal 

4. annual 

I n  a study of ocean surface weather data [12] it i s  found tha t  

periodic functions a r e  apparently ex i s t en t  i n  data co l lec ted  over the 

years and which are t r e a t e d  as an annual ensemble. 

Baldwin [4] determined that the processes i n  the annual data are 

not s ta t ionary.  Neither of these i s  unexpected. The usual method 

of avoiding the cyc l ic  e f f e c t s  i s  t o  treat  the  data i n  monthly o r  

shorter ensembles. 

Following this, 

T h i s  i s  followed even though p a r t i a l l y  truncated 

d i s t r ibu t ions  may have been obtained. 

s t a t i o n a r i t y  i n  t h e  monthly data i s  not r e j ec t ed  and it i s  assumed 

that t h e  process i s  indeed s ta t ionary .  By an analogy, processes 

The n u l l  hypothesis of 
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through the day will be expected t o  be per iodic  but within an hourly 

in t e rva l  the  process may be essent ia l ly  s ta t ionary.  

N o  mathematics w i l l  be used i n  this report  t o  i s o l a t e  and 

remove periodic or aperiodic processes embedded i n  the data.  

i so l a t ion  and extract ion of the  periodic o r  aperiodic functions from 

the  data i s  deferred t o  later research. It i s  assumed here that the  

processes involved a r e  reasonably s ta t ionary  over a month. 

The 

Ergodicity i n  the  Markov system implies that it is  possible t o  

go from any s t a t e  t o  any other s t a t e ,  yet  that the process i n  time 

will converge t o  some determinable state. 

that if sample or t i m e  averages obtained from a record may be used 

as an approximation t o  the corresponding population average, then 

the process can be sa id  t o  be ergodic. 

converge t o  climatology. Any disrupt ion i n  the convergence process 

i n  the  weather w i l l  be damped i n  t i m e  and t h e  process will continue 

i t s  convergence t o  climatology. 

i n  t i m e  and subsides i n t o  the  general t rend  of the  t o t a l  system. 

Thus, the climatological vector of a Markov d i s t r ibu t ion  may be con- 

s idered t o  be the ergodic vector.  Ergodicity implies s t a t iona r i ty  

but t h e  converse i s  not t rue .  

B. Preparation of Probabi l i ty  Matrices 

Parzen [45] ind ica tes  

I n  general, weather processes 

The disrupt ive influence disappears 

A t  this point a standard matrix format will help t o  v isua l ize  

the  procedures of forming an array.  

terms of frequencies w h i l e  Table V . 2  shows a matrix i n  terms of 

empirical  p robab i l i t i e s  or  r e l a t ive  frequencies. 

same as Table V . l  except that each frequency f i j  has been divided 

by n, the number of p a i r s  of observations. 

Table V . l  shows a matrix i n  

Table V . 2  i s  the  
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TABLE V.l SCHEMATIC RAW FREQUENCY MATRIX 

Table V.l 

contingency table  i n  terms of frequencies. 

of observation of t he  &-th row with the  A-th column. 

Schematic set-up of a two way, row and column, 

An f i j  i s  the  

f i  

r x c, 

frequency 

i s  the  

frequency of t he  L conditions i .e. ,  the  summation of the  i - t h  row 

over a l l  columns A. 
J-th column over rows 2. 

over a l l  rows and columns and i s  equivalent t o  n, the  t o t a l  number of 

paired observations. 

An f i s  the  summation of frequencies of the  4 
The f then i s  the s m t i c n  of freqdencies .. 

F i r s t  

c r i t e r i o n  

of c l a s s i -  

f i ca t ion  

NOW (i) 

1 

2 

3 

... 
i 

... 

... 
r 

Total  

Second c r i t e r i o n  of c l a s s i f i ca t ion  

( 3 )  

C 1 2 3 ... j ... 

... ... fll f12 f13 f 13  f l c  

2J f2c f21  f22 f 23 f ... ... 
f f ... f ... 

3c 
f 33 31 32 33 f 

... ... ... ... ... ... ... 
f ... ... fi j fil f i 2  i 3  

... ... ... ... ... ... ... 
... ... ... ... ... ... ... 

... ... r J  f r c  f f ‘rl f r 2  r3 

... f ... f 
.c 

f 
f.l f .2  - 3  . J  

Total  

fl. 

f2. 

f 3 .  

... 
fi. 

... 

... 
r. f 

f = n  .. 
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TABLE V.2 SCHEMATIC RELATIVE FmQUENCY MATRIX 

P 

. 

Table V . 2  Schematic set-up of a two way, row and column, r x c, 

contingency table in terms of empirical probabilities or relative 

frequencies where p = fij/f = f. ./n, n or f is the number of ij .. 1 J  .. 
paired observations, and f 

i-th row/J-th column combination. 

is the frequency of observation of the ij 

- 

First 

criterion 

of classi- 
f ication 
NOW (i) 

I 

2 

3 

... 
i 

... 

... 
r 

- 
T o t a l  

Second criterion of classification 

(3) 

1 2 3 ... ... C Total 

... P n  P u  P13 . * e  '1 j Plc Pl . 
P21 P22 P23 ... '2 j p2c p2. ... 

... 
P31 P32 P33 * * *  '33 p3c p3 

... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... 

... ... 1.00 p.1 p.2 p.3 P. j P. C 
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A schematic of a transitional probability matrix is shown in 

Table V . 3 .  A transitional probability is a probability for the 

occurrence of a later event given that an initial condition has 

occurred. The matrix is prepared easily by dividing the f 

respective row frequencies f 

by the ij 
of Table V . l .  It should be noted i. 

that the sum of the transitional probabilities over a row pi./i 

must equal 1.00. 

The matrix shown in Table V . 3  is used as the basic scheme for 

predicting categories of maximum winds. Only a category, and not a 

specific wind speed, can be forecast. The requirement of establishing 

suitable classes essentially makes the continuous wind distribution 

discrete. 

For ease of reference, following Baldwin [4], the transitional 

probability matrices prepared for this study may be identified as 

1. indicates the period covered, such as for 

12-hour, d for 24-hour, 3 for week, - m for month, 
a for annual. 

[plis the transitional probability matrix. 

2 is the time interval of the matrix such as 12 
for 12 hours, 24 for 24 hours, 36 for 36 hours, etc. 

- 
2. 

3 .  

C. Tests of Transitional Probability Matrices 

1. Stationarity test 

If dl . .. dt . . . is a stationary M.P. or M.C. with a transition 

matrix [p] and an absolute, climatological, marginal, or ergodic 

vector [n] , then Baldwin [4] shows that 
v .c .1  L3-d [PI = c f i 3  
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TABLE v.3 SCXENATIC PREDICTION MATRIX 

Table V.3 Schematic set-up of a two way, row and column, r x c, 

contingency table in terms of empirical transitional probabilities 

'ij/i ij 

- i-th row/J-th column combination, and fi 

i-th row frequencies over all columns j. 

= f. ./fi where fij is t h e  frequency of observation of the 

is the summation of the 

First 

criterion 

of classi- 
f ication 

NOW (i) 

1 

2 

3 

... 
i 

... 

... 
r 

1 

Second criterion of classification 

(j) 

2 3 ... 5 ... C T o t a l  

... ... '11/1 'l2/1 '13/1 P1 j/l 

'21/2 '22/2 '23/2 * . *  '2 j/2 ... 
... 

p31/3 '32/3 p33/3 * . -  '3j/3 

... ... ... ... ... ..* 
... ... Pil/i Pi2/i Pi3/i Pi j/i 

... ... ... ... ... ... 
... ... ... ... ... ... 

... ... *rl/r Pr2/r Pr3/r Pr j/r 

PlC/l 

p2c/2 

p3c/3 

... 
Pic/i 

... 

... 
Prc/r 

p1. /1 

p2. /2 

p3 /3 

... 
'i . /i 
... 
... 

Pr . /r 
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Thus, t he  quantity 1x1 [PI - [ x ]  

of a process. 

l e a s t  not s ign i f icant ly  d i f fe ren t  from zero, then the  process can be 

assumed t o  be s ta t ionary .  

establish a f i r m  estimate as t o  how l a rge  a difference from zero can 

be accepted before a decision i s  made tha t  the  operating system 

not s ta t ionary.  Obviously, the number i s  a function of t he  number of 

observations a s  well  as of the number of categories .  

can be used t o  t e s t  t he  s t a t i o n a r i t y  

If t h e  quant i ty  f o r  a given process i s  zero, o r  a t  

Not enough experience has been gained t o  

i s  

2.  Distribution tests 

The information s t a t i s t i c s  can be used t o  t e s t  whether o r  not 

a given d i s t r ibu t ion  is s t a t i s t i c a l l y  the  same as a spec i f ied  theo- 

r e t i c a l  d i s t r ibu t ion .  From IV.B.3 and the  discussion following it, 

the  tes t ,  under the  n u l l  hypothesis that the expected arid observed 

c e l l  frequencies a r e  the  same, i s  

c A 
h a 21 = 2nii = 2; fa I n  - - b  

npa 
v. c.2 

where f 

of observations i n  t he  sample 

t h e  - a- th  c e l l ,  and b i s  t h e  number of c e l l s  w i t h  zero frequencies. 

The tes t  s t a t i s t i c  i s  asymptotically d i s t r ibu ted  as x2. Since the 

t o t a l  number of degrees of freedom of the  system vt i s  a - 1, and 

the  number of r e s t r i c t i o n s  placed upon t h e  system i s  v 

of degrees of freedom associated wi th  np ), t he  appropriate number 

of degrees of freedom v w i t h  which t o  en ter  t h e  x2 table i s  

is  t h e  observed frequency i n  the  - a - t h  c e l l ,  n i s  the  number a 

i s  the t h e o r e t i c a l  p robabi l i ty  of , Pa 

( the  number 
"Pa 

a 

v = v  - v  = a - 1 - v  
t "Pa npa 

v. c. 3 
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The subt le  point of re jec t ion  o r  of non-rejection of hypotheses 

The non-rejection of a hypothesis does not mean that the a r i se s .  

hypothesis i s  accepted i n  t o t a l i t y  o r  f i n a l i t y .  

precise  test  may indicate  that the hypothesis should be rejected.  

The precis ion of the m . d . i . s .  or d.c.s. test s t a t i s t i c  appears t o  be 

dependent upon the n-count of the sample. 

sample observations i s  y, then the 21 based on kn s q l e  observations 

i s  ky, where k i s  a constant mult ipl ier  of each frequency of t he  

o r ig ina l  d i s t r ibu t ion .  

t r i b u t i o n  the  24 i s  thus a monotonic increasing function of t h e  

sample s i z e  n. The degrees of freedom, however, a r e  independent of n 

and therefore  do not change as 21 var ies .  Further research i s  needed 

t o  develop a quant i ta t ive  measure of the precis ion of the  test. 

A stronger or  more 

A 
If a 21 based on $fa> 0) = n 

A 

For a constant empirical probabi l i ty  dis-  

A 

One of the  uses of the  t e s t  s t a t i s t i c  is  that of comparing an 

observed frequency d is t r ibu t ion  t o  an equiprobable d is t r ibu t ion .  

is, it i s  compared with the  maximum entropy possible i n  the  system. 

Under the  null hypothesis t h e  probabi l i ty  of being i n  any c e l l  i s  

the  same as that of being i n  any other c e l l .  

constant l/g, where g i s  the  number of c e l l s  a = 1, 2, ..., g, t h e  

proper test  s t a t i s t i c  i s  

That 

Se t t ing  pa equal t o  a 

A gf a 2 1 =  2 n i =  2Z f I n -  - b, Y =  g - 1 a a  n v. c. 4 

which breaks down i n t o  the  coqonents  
A 

2 1 = 2 n c = % f a 1 n f a + 2 n l n g  - 2 n l n n - b  v. (2.5 

These equations can be computed bes t  by t h e  use of e lectronic  computers. 

However, t a b l e  look-up permits advantageous use of desk calculators .  
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Edlback  [OF. c i t . ]  and Masuym Cop. c i t . ]  provide t ab le s  of i n  n, 

n I n  n, and n( ln  n)2, up t o  ~1000. Woolf [op. c i t . ]  provides t ab le s  of 

2n In  n up t o  ~ 2 0 0 9  while Kullback e t  a1 [3g]provide t ab le s  of 2n In  n 

up t o  n=lO,OOO. 

A two-dimensional d i s t r ibu t ion  can be expressed by a matrix of rows 

i = 1,2,  ..., r and columns j = 1,2,  ..., c where the  rows represent the  

first dimension o r  c r i t e r i o n  of c l a s s i f i ca t ion ,  and the  columns represent 

t he  second c r i t e r ion .  I f  the  two c r i t e r i a  axe independent, then pa = 

pi j  - - pipj. Under t h e  n u l l  hypothesis of independence between rows and 

columns, 
r c  f .  1 

The p.  and p 

sample f i  /n and f ./n, respect ively.  

Table V . l ,  V . 2  and V.3. 

can be estimated by the  r e l a t i v e  frequencies of the data 
1 j 

The notat ion used i s  t h a t  of - J  
The s t a t i s t i c  then becomes 

a r c  nf. 
I\ - 

21 = 2nu = 2?=1 s1 f i j  I n  3 - b 
f ,  f 4 

v.c.7 
I. .J 

I n  a three-way c l a s s i f i ca t ion ,  o r  cubical  matrix with r rows, c 

columns, and d depths, the  d.c.s. ' for  t e s t i n g  independence among the  

three criteria i s  

Extensions t o  higher way c l a s s i f i ca t ions  are made eas i ly ,  but the study 

of t he  marginal d i s t r ibu t ions  becomes ra ther  complex o r  involved. 

Such s tudies  are the  analysis-of-information s tudies  proposed by Kull- 

back e t  a1 [40] and are analagous t o  the  ana lys i s  of variance with 

an acronym ANOVA. A corresponding acronym could be ANOINF. 

A sequence of observations can be t e s t e d  aga ins t  t h e  hypothesis 
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I -  

. 

. 

that it i s  a s ta t ionary Markov chain of specif ied order m. Successive 

pairs i j  of observations of the occurrences of the  states o r  c l a s s  

i n t e rva l s  of a M.C. can be d is t r ibu ted  i n  a two-way contingency table 

such that the  first state of the pair is  the row category i or t he  

NOW condition, and the  second state of the p a i r  is  the  column category 

j or the  LATER condition. The t a l l y  of overlapping pairs of obser- 

vat ions can be represented as i n  Table V . l .  If overlapping t r i p l e t s  

are considered where an f 

PREVIOUS s t a t e  i, NGW state j,  and LATER state k, then a cubical  o r  

is  the  frequency of observations of a i j k  

three dimensional matrix can be constructed. The process can be 

extended out t o  any dimension 1, 2, 3 ,  ..., and a l l  dimensions w i l l  

have necessarily the same number of states or c l a s s  in te rva ls .  

A stat ionary M.C. i s  determined completely by an i n i t i a l  

probabi l i ty  vector and a matrix of t r a n s i t i o n  probabi l i t i es .  If a 

sequence of three observations i, j, and k i s  a representation of 

a M.C. of order one, t hen  

v.c.9 

where p i s  the probabi l i ty  of the whole sequence under the first i jk  

order assumption, pi i s  the  i n i t i a l  probabi l i ty  o r  t he  probabi l i ty  

of the  first observation i, pij/p. i s  the t r ans i t i on  from i t o  j, 

and p .  /p .  i s  the  t r a n s i t i o n  from j t o  k. Since a longer ini t ia l  

sequence would require  more t rans i t ions ,  V.C.9 generalizes t o  

1 

Jk J 

v.c.10 
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I F  the t.heoretica1 probabilities are not known, empirical probabilities 

should be used. 

probabilities is shown in Table V . 3 .  

The format of the matrix of empirical transition 

Under a second order assumption a third observation is dependent 

upon the previous two observations. A transition probability can be 

represented by pi jk/pi j. The initial probability used is that for the 

first two observations; therefore, 

= (Pij)(-L)(+ Pi'k 'jkl ... (-) px z ... v. c. 11 
'ij 'jk pXY 

pi jkl.. .xyz.. . 

Extension of the transition theory to higher orders is easily made. 

for pa enables V.C.2 to test whether ... Substituting a pijk 

an observed frequency distribution is a realization of a stationary 

M.C. of order specified by the p . The null hypothesis is that ijk.. . 
the observed distribution is of 

it is of order m + 1. In other 

example, has probabilities 

Pijk = (P 

order m within the assumption thgt 

words a M.C. of order two, for  

)(LE) 
J pij 

but the null hypothesis of order one implies that 

'ijk - 5 
Pij Pj 

It follows, therefore, that 

v. c. I 2  

v. c. 13 

V. C. 14 
J J 

A given stationary sequence of observations is tested for 0, 1, 2, ... 
A 

order. If the computed 21 or 211; are ordinate values plotted against 
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monotonic increasing orders on the abscissa,  then the  order m of the  

process operating i n  the sequence i s  tha t  value of the  abscissa f o r  

which the ordinate value of the curve first fa l ls  below the chosen 

x2 re jec t ion  leve l .  

that can be gleaned from the  "history" of the data. 

the addi t iona l  "history" incorporated i n t o  any order >m will not 

lower the  entropy o r  increase the information that i s  inherent i n  t h e  

m - t h  order process. 

Any order <m will not u t i l i z e  a l l  the information 

On the other  hand 

When r e l a t i v e  frequencies a r e  used as estimates of the theo re t i ca l  

the  m . d . i . s .  and the d.c.s. i jk' in i t ia l  and t r a n s i t i o n  probabi l i t i es  p 

diverge from equality.  

made about t he  behavior of the  empirical i n i t i a l  p robabi l i t i es .  

Baldwin [ 5 ]  places the r e s t r i c t i o n  of independence upon these proba- 

b i l i t i es  such that 

The difference results from the  assumptions 

P P P  P P P P  

V. C. 15 

K a b a c k  e t  a1 [40] provide a more general  test i n  t h a t  they do not 

r e s t r i c t  the i n i t i a l  probabi l i t ies .  The degrees of freedom with 

which t o  en ter  the  x2 t ab les  depend upon the  t e s t  s t a t i s t i c  used. 

For the m . d . i . s .  or 21 
A 

m t  v = s ( s  - t s + t - 1 )  

and f o r  t he  more r e s t r i c t i v e  d. c. s. or 2 n i  

v = sm(st - ts  + t) - m ( s  - 1) - 1 

v. c. 16 

V. C. 17 

where s is  the  number of s t a t e s  or c l a s s  i n t e rva l s  i n t o  which each 

observation can fall ,  m i s  the order of Markovity against  which t h e  

observed frequency matrix or sequence i s  being tes ted ,  and t i s  the  
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order m subtracted from the t o t a l  length of t he  sequence i, j ,  k, ... 
The minimum length of the  t o t a l  sequence must be m + 2. 

3 .  Comparison between matrices 

Baldwin [ 41 indica tes  some of several  arrays which may be 

used t o  determine whether t he  differences between matrices could 

be considered t o  be significant. .  L e t  P = (p .  .) and Q = (qj) be 

any two n x n matrices. 
1 J  

The following quant i t ies  are measures of t he  

closeness t o  equal i ty  of P and Q. 

a. The Euclidean Distance 

2 1 1  P - Q 11, = [ C ( p i j  - qj) , 
i j  

b. The Norm Distance 

v. c. 18 

v. c. 19 

c.  The Mean Difference 

v.c.20 1 (TQ) = p  C C (p i j  - %jI 
i 3  

An important quant i ty  associated with the  mean difference i s  

the  

d. Variance of t he  Differences 
r 

v.c.21 

S t i l l  another metric set  would be the  comparison of entropy and 

the  variance of the respective matrices. T h i s  i s  only suggested here 

and will be investigated later. An estimate of an entropy, however, 

would be, a f t e r  Masuyama [op. c i t . ] ,  
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. 

k 

i=l 

A 
H = - c (fi/n) In (fi/n) 

with 

v.c.22 

v.c.23 

As indicated previously, Masuyama [op. cit.] states that the 

entropy likelihood estimate is similar to a formal variance. 

be necessary to check the behavior of the entropies for these are 

bounded at zero by definition. The normalized entropies are bounded 

by zero and one by definition. Perhaps a logarithmic transformation 

of the entropies or an arc sine transformation of the normalized 

entropies would be in order. 

ratio Z-test of Fisher [22], renamed the F-test by Snedecor [52], 

would suffice. 

for they may have been reported on already and the authors are unaware 

of such reports. 

It will 

From the above similarity the variance 

The above suggestions are for future investigation 

VI. COMPUTATIONS 

The maximum winds taken at =-hour intervals in the 10-15 km 

layer over Cape Kennedy, Florida, during the eight-year period 

1956-1963 are used to develop transition probability matrices. 

These matrices are of various sizes and dimensions. 

A. Two-state Matrices 

Two-state manually canpiled matrices of dimension r = 2, 3, 4, 5 

are studied primarily in order to explore the nature of the information 

statistics and to verify some of the properties of these statistics. 

Only January data are used. 

dichotomized into states of winds (70 mps and winds ;L 70 mps, 

In one set of arrays the data are 

33 



and i n  another set t h e  two c lasses  cons is t  of winds <43 mps and 

winds 2 43 mps. 

The two-dimensional matrices have l i t t l e  pred ic t ive  value 

because the only possible forecas ts  are those of pers is tence and 

of climatology. 

the  only four possible forecas t  schemes. I n  par t  a t he  process 

operating is pe r s i s t en t  i n  that the  i n i t i a l  state w i l l  always be 

forecas t .  A "negative" pers is tence i s  indicated i n  p a r t  b s ince 

j = 2 f o r  i = 1 and j = 1 f o r  i = 2. P a r t s  c and d show the  two 

climatological forecas ts .  In  these cases the  value of j i s  inde- 

pendent of t h e  i n i t i a l  state i. 

This can bes t  be seen i n  Table V1.1, which shows 

An r-dimensional matrix with the same s states i n  each dimension 

represents  a Markov chain of order m = r - 1. 

show t h a t  an m - t h  order chain can be reduced t o  a f i rs t  order chain 

and represented by a two dimensional matrix with s 

expansion process can be i l l u s t r a t e d  as follows. 

Kemeny and Snell .  [32] 

m 

Consider a two-state 

states. The 

( S  = 2) M.C. of second 

with r = 3 = (L,J,&). 
are s s and sk. I n  i' j 

order (m = 2) t h a t  i s  depicted by an a r ray  

The states corresponding t o  each dimension 

the  expanded chain m = 1 and r = 2 with the  

f i r s t  dimension containing the p a i r  

t he  second dimension containing the 

Thus, t h e  or ig ina l  two-state second 

transformed in to  a four -s ta te  f i rs t  

of states (si, sj) = s i j  and 

p a i r  of states (s  j' sk) = s jk '  

order (L x J x - k) matrix i s  

order (u x &) matrix. The 

reduction of a M.C. t o  f irst  order f a c i l i t a t e s  t he  r e t r i e v a l  of usefu l  

information from the system a t  the expense of g rea t ly  increasing the  

complexity of t he  computations. 
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. 

v1.1 Two-state, two dimensional t r a n s i t i o n a l  probabi l i ty  

matrices with rows representing the  NOW states i = 1, 2 and the  

columns representing the LclTER states j = 1, 2. 

forecast  value of j i s  underlined. 

j given i which has the  highest p robabi l i ty  occurrence. 

For a given i the  

The forecast  i s  that value of 

LATER state j LATER state j 

1 2 1 2 

NOW 1 - .70 -30 NOW 1 -30 2 
state state 

i 2 .30 3 i 2 - .TO .30 

a) Persistence 

LATEB state j 

1 2 

NOW 1 - .70 30 
state 

i 2 - .70 30 

c )  Climatology 

b) "Negative" Persistence 

LATER state j 

1 2 

NOW 1 .30 2 
state 

i 2 .30 2 

d) Climatology 
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B. Three-state Matrices 

Manually tabulated r = 2, 3 ,  4, 5 dimensional matrices with 

wind 

t e s t e d  f o r  s t a t iona r i ty  and order of Markovity m =  0, 1, 2, 3 .  Only 

January data a r e  examined. 

s t a t e s  0 < s1 < 43 mps, 43 mps < s2 < 7 0  mps, 70 mps s a re  3 

A 
The t e s t  s t e t i s t i c  computed i s  the  21 of V.C.2. The pa takes 

on the  values of t he  empirical t r a n s i t i o n a l  and less r e s t r i c t i v e  

i n i t i a l  p robabi l i t i es  that  are appropriate f o r  t he  order being tes ted .  

When the expected p robab i l i t i e s  are grea te r  than zero f o r  a l l  c e l l s  

of a matrix, the degrees of freedom are evaluated from V.C.16. 

some of these p robab i l i t i e s  are zero, however, V.C.16 i s  inva l id  and 

the degrees of freedom v are found by considering the  degrees of 

freedom associated with each independent component of t h e  logarithmic 

argument of V.C.2. 

If 

In order t o  check t h e  results of m . d . i . s .  order test of Kullback 

e t  a1 [40] the normalized entropies R of t h e  r-dimensional matrices 

are computed and p lo t t ed  on a graph of R v s  r. 

which R f i r s t  becomes nearly constant as r increases  should be equal 

t o  m + 2, where m i s  the  order of the  operating system. 

C. 6-, 11-, 22-state Matrices 

The value of r for  

The maximum winds are separated i n t o  6, 11 and 22 c lasses  o r  

states (0-20 mps, 21-40 mps, . . . , 101-120 mps), (0-10 mps, 11-20 mps, 

. . . , 101-110 mps) and (0-5 mps, 6-10 mps, . . . , 106-110 mps) , respect ively.  

These data are  processed by e lec t ronic  computers t o  provide period- 

month l ag  matrices of NOW against  LATER observed conditions i n  t i m e  

i n t e rva l s  of 12 hours out t o  a maximum of 120 hours or  l a g  t = 10 

time in te rva ls .  The arrays contain frequencies of occurrence, 

c 
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relative frequencies and empirical transition probabilities for each 

cell. The marginal or climatological vectors are also included. 

For each matrix the following quantities are computed: 

1. [ I I ]  [p] - [n] to test for stationarity 

2. entropy H and normalized entropy R 

3 .  2116 for independence between NOW and LATER conditions 

(not corrected for zero frequencies) 

The last quantity is used in the method suggested by Baldwin [ 5 ]  

for approximating the Markovity of a system. 

the ten s-state lag matrices for a period-month is plotted as an 

ordinate value against the l a g  or increasing time interval on the 

abscissa. 

drawn. 

between the NOW and lag t observations. 

line indicates independence between the NOW and lag t observations. 

A smooth curve drawn through the points w i l l  cross the rejection line 

once if there is no periodicity in the data. 

is at lag t, then all observations at a lag greater than t will not 

be influenced by the NOW condition. 

fore is estimated to be the value of the lag at which the 2 6  curve 

intersects the x2 rejection curve. 
mation because the interactions or partial correlations between lags 

are not considered. It is probable in a stationary process that the 

information indicated by a significant value at a large lag will be 

extracted and provided for by a lower order process. 

lag graphs for the Cape Kennedy, Florida, period-month maximum wind 

data are held in file at ESSA-EDS-NWRC. 

The 2ni  for each of 

A horizontal line depicting the x2 rejection level is 

A point above the line indicates dependence or correlation 

Similarly, a point below the 

If this intersection 

The Markovity of a system there- 

The method is only an approxi- 

The 2nc versus 
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Kemeny and Snell [op. cit.] show that under the assumption of 

a first order stationary process [p] the two-step transition matrix 

of the process is given by [pI2 , the three-step transition matrix 
is given by [p]: ... 
zero and 

In other words the partial correlations are 

VI. c. 1 

where [p], is the lag one correlation matrix and t is the transition 
B 

step. 

(B[p]1)3 is the 36-hour transition matrix. 

discuss a phase of this procedure that is based on Koopman's work [%I. 

For example, if [pI1 is a 12-hour transition matrix, then B 
Wadsworth et a1 [op. cit. 1 

In order to test the validity of a first order assumption of 12- 

and 24-hour transition matrices, 

and then are compared to the corresponding observed conditional proba- 

[pIl and @[pI2 are raised to powers B 

bilities. 

to the corresponding observed conditional probabilities; that is, 

No products of two different interval matrices are compared 

the product of the 12-hour and the 24-hour matrices are not compared 

to the observed 36-hour transitional probability 

moael. If the differences are not significantly 

then the first order assumption is valid. 

matrix. The quantities 

computed to test the 

different from zero, 

The above computations are tabulated and held in file both at 

ESSA-EDS-NWRC and at NASA-MSFC-R-AERO-YT. 

calculations have been extracted from the tabulations as examples and 

are shown in Table VI.2.a-e. 

D. m-th Order Six-state Matrices 

The results of a few of the 

The maximum winds over Cape Kennedy, Florida, are separated into 

c 
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s i x  c lasses  of  equal i n t e rva l s  of 20 mps. 

state, second order matrix can be represented by a two dimensional, 

36-state, f irst  order matrix where each of the  36 states i s  a com- 

binat ion of the o r ig ina l  s i x  states. Under t h i s  second order assumption 

A th ree  dimensional, six- 

the  period-month wind data a re  processed by e lec t ronic  computer t o  

provide 36-state, l ag  t = 1, 2, . . . , 10 matrices of p r io r  against  post 

observed conditions. The a r rays  contain frequencies of occurrence, 

r e l a t i v e  frequencies, and empirical  t r a n s i t i o n  p robab i l i t i e s  f o r  each 

c e l l .  The marginal or  climatological vectors a l s o  are included. 

For each matrix the  following quant i t ies  are computed: 

1. C3II [PI - c3I3 

2. H and R 

3 .  2 6  f o r  independence between p r io r  and post conditions 

(not corrected f o r  zero frequencies).  

The 

are 

and 

computed f o r  t h e  period-January matrices. 

matrices are held i n  f i l e  a t  ESSA-EDS-NWRC. 

A l l  t he  calculat ions 

Manually tabulated r = 2, 3, 4, 5 dimensional, s ix-s ta te ,  period- 

January matrices are tested f o r  s t a t i o n a r i t y  and spec i f i c  order 

m = 0, 1, 2, 3. 

t he  p 

Normalized entropies a l s o  are computed. 

procedures are the  same a s  those discussed previously i n  sect ion V1.B. 

A 
The tes t  s t a t i s t i c  used i s  the 21 of V.C.2, where 

takes  on the values appropriate f o r  t he  order being t e s t ed .  a 

These manual calculat ing 

V I I .  RESULTS 

A. Sta t iona r i ty  

The metric chosen fo r  comparison between the  s t a t i o n a r i t y  t es t  

[ n l  [PI - [n l  = pij  and [ol = qij  i s  the  l a r g e s t  state o r  norm 
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difference max /pi - I . The a r b i t r a r i l y  se lec ted  c r i t e r i o n  f o r  

re jec t ing  the assunption of s t a t iona r i ty  is  a norm difference 2 .O30. 

O f  a l l  the matrices t e s t ed  the l a rges t  difference i s  .018, which is  

w e l l  below the c r i t e r i o n  selected.  It i s  assumed, therefore ,  that a l l  

t h e  processes examined a r e  s ta t ionary.  

( i j>  

It i s  in t e re s t ing  t o  note, however, that the  maximum norm dif- 

ference occurs i n  October, w h i l e  secondary maxima occur i n  t h e  spring 

months of Apri l  and May. 

of July and August deviate the l e a s t  from s t a t iona r i ty .  

r e f l e c t  the abrupt change from summer t o  winter i n  October and the  

r e l a t i v e l y  gradual t r a n s i t i o n  from winter  t o  summer during the spring. 

The small norm differences i n  the  summer are indica t ive  of a constant 

weather regime. 

B. Order 

The operating processes i n  the  summer months 

These results 

Baldwin's test s t a t i s t i c  [ 5 ]  f o r  approximating the  order of an 

operating system is  calculated f o r  each of the e lec t ronic  computer 

tabulated matrices. The results of this test f o r  first order matrices 

are i l l u s t r a t e d  by the graphs of t he  uncorrected 2nc vs  l a g  i n  Figures 

7-9. 

curve in t e r sec t s  the  horizontal  l i n e  depicting the  x2 re jec t ion  leve l .  

A summary of the  approximate order f o r  a given month and matrix c l a s s  

i n t e r v a l  i s  shown i n  Table VII.1. 

The maximum orders m are  determined from the point a t  which a 

Clearly demonstrated from th i s  table i s  the  f a c t  that as the  

c l a s s  i n t e rva l s  become smaller, the persistence o r  h i s tory  within 

the i n t e r v a l  becomes l e s s .  T h i s  i s  not unexpected. Note t h a t  during 

the summer months the approximate order of Markovity f o r  the 5 mps 

in t e rva l s  i s  zero. T h i s  implies e i t h e r  that predict ion within 5 mps 
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Fig .  7. Graphs of 2 n i  vs. lag for  Cape Kennedy, Flor ida,  10-15 km 
maximum wind mat r ices  with c lass  intervals of 0-20 mps, 
21-40  mps, . . . , 101-120  mps  for time intervals of 12 to 
120 hours, 1 / 2  day to 5 days. Per iod of record 1956-1963 .  
The uncorrected 2nu values a r e  x' distributed with 2 5  de- 
grees  of freedom. 
level, 3 4 . 4 ,  i s  indicated by a horizontal line across  each 
inset graph. 

The value of X'at the 0 . 9 5  rejection 

' I  u I '  is the dependence capacitance. 

4 
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Half Days Half Days 

Days Days 

Fig. 8. Graphs of Znu VS. lag for Cape Kennedy, Florida, 10- 15 km 
maximwrYwind matr ices  with class  intervals of 0-10 mps,  
11-20 mps,  . . . , 101-110 mps for time intervals of 12 to 
120 hours, 1 / 2  day to 5 days. Period of record 1956-1963. 
The uncorrected 2x1;; values a r e  x’ distributed with 100 de- 
grees  of freedom. 
level, 118.5, is-indicated by a horizontal line across  each 
inset graph. 

The value of x’at the 0.95 rejection 

” u ” is the dependence capacitance. 
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Fig. 9. Graphs of 2nL vs. lag for Cape Kennedy, Flor ida,  10- 15 km 
maximum wind matr ices  with c lass  intervals  of 0-5 mps ,  
6- 10 mps,. . . , 106-110 mps for time intervals  of 12 to  
120 hours ,  1 / 2  to 5-days. Per iod of record  1956-1963. 
The uncorrected 2nu values a r e  x' distributed with 441 
degrees  of freedom. 
level, 476, is  irdicated by a horizontal line ac ross  each 
inset  graph. 

The value of X'at the 0.95 rejection 

" u " is the dependence capacitance. 

- 
- - 

1 1 1 1 1 1 1 1 1 1  I I I I I  I I  I l l  

56 



TABLE V I I . l  Approximate order of Markovity i n  the Cape Kennedy, 

Florida,  10-15 km maximum wind matrices i n  terms of 1/2 day (12- 

hour) periods by 20-, 10- and 5-mps c l a s s  intervals .  

record 1956-1963. 

Period of 

These orders have been determined from Figures 7-9. 

C l a s s  In te rva ls  

b P S  1 
J F M A M J J A S O N D  

20 

10 

5 

i o i o i o i o  8 4 3 1 2  8 8 1 0  
i o i o i o i o  6 2 2 1 2  5 6 8 
2 4 2 3 1 0 0 0 0 1 1 2  
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i s  too  r i g i d  a requirement for  the  present system of observing and 

reporting, or that  t he  t r ans i t i on  processes have converged and t h a t  

there  i s  no useful information i n  going back more than one t i m e  period 

i f  one t i m e  period a t  a l l .  I n  the  l a t t e r  case almost pure pers is tence 

could be used as a prediction. 

produced almost a t  random and a s t a t i c  predict ion model would suf f ice .  

T h i s  does not deny, however, t ha t  there may be other avenues t o  ex- 

plore.  

complex t o  provide more information. 

If any changes occur, they w i l l  be 

Other layers  and other s t a t ions  could be used i n  a s p a t i a l  

The r e s u l t s  of Baldwin's t e s t  153 show t h a t  t he  operating pro- 

cesses are of minimum order i n  the  summer and of maximum order i n  

the winter.  This means that there  i s  more information t o  be gleaned 

from the  h is tory  of the  weather i n  the  winter months than i n  the 

summer months. 

t o  climatology and t h e  Markov models may not be ef fec t ive  i n  fore-  

cast ing t h e  weather during t h i s  t i m e  of year. 

the Markov model predict ion scheme may hold promise of some success 

during the w i n t e r  months. 

I n  other  words the  summer systems have nearly converged 

On the  other  hand 

Monthly graphs of the  uncorrected 2n; v s  l a g  f o r  the  second order 

s ix-s ta te  matrices a r e  shown i n  Figure 10. 

based on (36 - 1)2 degrees of freedom i s  not depicted because the 

number of degrees of freedom are inval id .  

zero c e l l s  i n  these matrices make it possible  t o  de l e t e  about 20 rows 

and columns from the winter arrays and about 30 rows and columns from 

the s m e r  arrays.  The resu l t ing  matrices would have the same com- 

puted 2n; as the o r ig ina l  ones, but t he  number of degrees of freedom 

would be great ly  reduced. 

The x2 r e j ec t ion  l e v e l  

The high frequencies of 

c 
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Fig. 10. Graphs of uncorrected 2nu vs .  lag for Cape Kennedy Florida, 

The b m e  in- 
10-15 km maximum wind matr ices  with 36 classes  (bi Sj)of  
interval  Si , S .  = 20 mps where i ,  j = 1, . . . , 6. 
tervals  a re  l i t 0  120 b u r s ,  112 day to 5 days. 
Record 1956- 1963. 

Period of 
u " is the dependence capacitance. 
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The tendency f o r  some dependence capacitance curves t o  slope 

upwards towards f ive  days implies t h a t  there  may be some periodic 

function operating i n  the  matrices and t h a t  t he  matrices are not 

ac tua l ly  s ta t ionary.  However, t h i s  tendency i s  only s l i g h t  and no 

fu r the r  examination of the possible periodic feature i s  made here. 

Crutcher and Charles [l3], though, previously noted four and f i v e  

day pe r iod ic i t i e s  i n  the  wind a t  these l eve l s  i n  the Southeastern 

United States .  Invest igat ions of t h i s  feature w i l l  be made later.  

A comparison between f i r s t  and second order s ix - s t a t e  matrices 

i s  made readi ly  by examining normalized entropies.  

t he  annual march of t h i s  quantity f o r  the e lec t ronic  computer tabu- 

lated matrices. The higher the normalized entropy, the more chaos 

o r  disorder t h a t  i s  inherent i n  the operating system, and the more 

information tha t  may be extracted or  u t i l i z e d .  

curves f o r  s ix-s ta te  processes quickly reveals  that  i n  f a l l ,  winter 

and spring the second order matrices ex t r ac t  more information from 

t h e  systems than do the f irst  order matrices. I n  summer, however, 

t he  curves coincide and reach a minimum value.  T h i s  means t h a t  most 

of the  chaos i s  removed by the f i rs t  order matrix, and that it w i l l  

be very d i f f i c u l t  t o  ex t r ac t  any more information from the operating 

systems. 

Figure 11 depicts  

A look a t  the  two 

The similar pa t t e rn  of a l l  four curves ind ica tes  that f o r  t h e  

c l a s s  i n t e rva l s  studied the  winter months exhib i t  a high entropy 

and the summer months a low entropy. This implies tha t  t he  h is tory  

influence present i n  the winter may possibly be exploi ted t o  provide 

a workable Markov model, but that  explo i ta t ion  of t he  summer h is tory  

influence w i l l  not appreciably improve a Markov model. 

c 

. 
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0- 10 mps class intervals 

00 20 mps class intervals (first order) 
e -020  mps class intervals (second order) 
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0.10 - 
I I  I I  I I  I l l  

12 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  
MONTHS 

Fig. 1 1 .  Normalized entropy of Cape Kennedy, Florida, 
10- 15 km maximum wind transition matrices. 
Period of record 1956- 1963. 
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Because the above r e s u l t s  ind ica te  tha t  a Markov scheme may 

prove more f r u i t f u l  for  t h e  winter months than for  the summer months, 

January data is  studied i n  more de t a i l  than the data from other  months. 

The corrected 21 of Kullback e t  a1 [40] f o r  t e s t ing  order i s  computed 

for  2-, 3-  and 6-s ta te  t r ans i t i on  matrices. 

A 

The n u l l  hypotheses tested 

a re  that  the matrices are of order m =  0, 1, 2, 3 .  The 0.95 con- 

fidence l e v e l  i s  chosen as the  basis f o r  non-rejection of the  hypothe- 

ses. 

adjusted t o  compensate f o r  estimates of zero of t heo re t i ca l  proba- 

The degrees of freedom with which t o  en ter  the x2 t ab l e  a r e  

b i l i t i e s .  

It i s  seen tha t  although the  t e s t  of Baldwin revealed possible  rela- 

The r e s u l t s  of these t e s t s  are presented i n  Table V I I . 2 .  

t i v e l y  high orders, t he  data can be modeled by low order Markov chains. 

In  order t o  check these  r e s u l t s  the normalized entropies R of 

each s-state,m-th order process are tabulated.  

selected change of 2 10 percent between Rm and Rm + 

t o  be s igni f icant .  

January systems are second order. 

An a r b i t r a r i J y  

i s  considered 

Under t h i s  c r i t e r i o n  it i s  found tha t  a l l  four  

U s e  of higher order models does 

not produce a s igni f icant  gain of information. 

Under the assumption of s t a t i o n a r i t y  the 6 x 6, 11 x 11 and 

22 x 22 matrices are t e s t e d  f o r  f i rs t  order Markovity by comparing 
t 1 

(B[p~l )  and ( B [ p ~ 2 ) t  with ( B [ p ~ t ) l  and (B[P~2t )  , respect ively.  

The metric selected f o r  comparison i s  the norm distance.  Interpre-  

t a t i o n  of t h i s  quantity,  however, i s  d i f f i c u l t .  With only one 

observation i n  a c e l l ,  obviously a difference of t r a n s i t i o n  proba- 

b i l i t i e s  could be 1.00. Since the  norm value i s  dependent upon the  

number of observations used t o  determine an empirical  c e l l  t r a n s i t i o n  

probabi l i ty ,  the problem a r i s e s  as t o  what cons t i t u t e s  the  minimum 

" 
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TABLE VII.2 

e t  a1 [40] i n  the Cape Kennedy, Florida, 10-15 km maximum January 

wind matrices in terms of 1/2 day (=-hour) periods. 

Order of Markovity as determined by the  t e s t  of' Kullback 

Period of record: 

Number of 
States  s 

, 
b 

Order Class Intervals 
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number of c e l l  observations tha t  would make the norm value meaningful. 

Further research towards the appl icat ion of binomial o r  multinomial 

p robab i l i t i e s  t o  t h i s  problem i s  suggested. 

A subjective evaluation of the norm differences i s  possible.  

For the  three  s -s ta te  systems the  highest values occur i n  the  winter 

and the lowest values i n  the  summer. This  i n fe r s  that a f i rs t  order 

model would f i t  the  summer data b e t t e r  than the winter data. 

C .  Verif icat ion of the Predict ion Schemes 

The electronic  computer tabulated t r a n s i t i o n a l  and conditional 

probabi l i ty  matrices are used as prediction schemes t o  make forecas ts  

out t o  three days or  s i x  time in t e rva l s  during. the winter season of 

December, January and February and during the  summer season of June, 

July and August. 

from the  three-year period 1964-1966. The 10-15 km maximum wind 

observations on these days determine the  i n i t i a l  conditions from 

which predictions are made. 

are made f o r  a season. This occurs e i ther  because the  conditions 

during the tes t  period exceed the  limits of the predict ive scheme 

o r  because the predict ive scheme will allow equiprobable outcome 

events. 

Thir ty  days during each season are randomly selected 

In  some instances less than 180 forecas ts  

For each of the s-state systems, forecas ts  are made using f i rs t  

order conditional probabi l i ty  matrices ( [PI,)' and Markov t rans-  

i t i o n a l  probabi l i ty  matrices ( [p],) . 
and one of climatology a l s o  are made. 

v e r i f i e s  i f  the later observation fa l l s  i n  t h e  same c l a s s  as the  

i n i t i a l  observation, where the class i n t e r v a l  i s  determined by t h e  

s-states. The second pers is tenze forecast  v e r i f i e s  if the  l a t e r  

B 
t Two predict ions of pers is tence B 

The f i r s t  pers is tence forecas t  
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c 

observation falls in the same c l a s s  interval as the initial obser- 

vation, where the class interval is such that the initial observation 

is in the middle of the interval. 

frequency of observations from 1956-1963 serves as the climatological 

forecast. In addition to the above schemes second order conditional 

probability matrices are used to forecast six-state conditions. 

The state with the highest 

The results of these forecasts are depicted in Table VII.3. 

It is readily apparent that the prediction accuracy decreases as the 

class interval is made smaller. This is not unexpected since an 

increase in the number of classes is concomitant with a departure 

from the perfect but meaningless forecast implied by a one-state 

system. It is noted, though, that the relative frequencies are very 

l o w  in the 5 mps class interval systems. 

requirement for predicting in a high-precision, 22-state system is 

too rigid for the present practices of observing upper level winds. 

The inference is that the 

The accuracy of all the forecast schemes is greater in the 

summer than in the winter because the warm weather winds are much 

less variable than the winter winds. 

explains the high verification scores of persistence. It will be 

difficult for any prediction scheme to be better than persistence 

during the summer season. 

This low variability also 

A Markov first order prediction scheme works best in the 11-state 

system. 

also does well in the summer for a process with 10 mps class intervals. 

In a system with more states the precision requirements are too 

stringent to obtain good forecasts, and in a system with fewer states 

It provides the greatest accuracy of any winter forecast and 
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h 

most of t he  v a r i a b i l i t y  of t he  observations is  within a c l a s s  and 

cannot be detected by the Markov scheme. 

Manually tabulated first, second, and th i rd  order one-step 

t r a n s i t i o n  matrices fo r  January a r e  used t o  make 12-hour forecasts  

on 40 randomly selected days from the four Januaries i n  1964-1967. 

forecasts  are compared with those of climatology and persistence.  

four systems shown i n  Table VII.2 are evaluated. 

The 

The 

The r e s u l t s  of the  12-hour forecas ts  are given i n  Table V I I . 4 .  In 

all four systems the  climatological forecast  i s  the  worst. 

scheme predict ions coincide with those of pers is tence i n  all but t h e  

6-state system. 

s i s tence  are allowed i n  the 2- and 3-state systems, instances where 

they can be made are l imi ted  t o  the lowest frequency classes.  

the 6-state system the t h i r d  order matrix provides the bes t  forecas ts  

of t h e  three Markov schemes. 

The Markov 

Although forecasts  of t r ans i t i ons  other than per- 

I n  

Markov models w i l l  produce results equal t o  o r  better than per- 

s is tence.  I n  the one case where pers is tence shows a higher score 

t h e  comparable Markov model i s  not shown. It would be necessary t o  

construct a new model based on the  same i n t e r v a l  used f o r  each per- 

s is tence prediction. 

i n  mind w h i l e  assessing the  r e su l t s  previously shown i n  Table V I I . 3 .  

V I I I .  CONCLUSIONS 

T h i s  unequal comparison should also be kept 

The r e s u l t s  of the previous sect ion can be construed t o  ind ica te  

that a forecast  of t he  10-15 km maximum winds over Cape Kennedy, Florida,  

based on pers is tence i s  not s ignif icant ly  d i f fe ren t  from a forecast  based 

on a more sophisticated Markov scheme. This inference, however, i s  

l imited i n  l ight  of several  considerations of the study. 
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Some considerations of the limitations of the data are in order. 

The forecast schemes are based on data from an eight-year period, or 

essentially from a relatively small sample of eight. Since the wind 

distribution is continuous, it is expected that over a long period 

of time a l l  cells of a contingency table should be filled, even though 

the matrix represents a discrete distribution. The discreteness is 

only artificially induced by arbitrarily setting class intervals into 

which the observations are forced to fall. Because of the s m a l l  

sample of eight that is used in this study, most of the matrices con- 

tain cells of zero frequencies. 

The problems encountered as a result of the zero cell frequencies 

are numerous. 

as estimates of the true theoretical transition probability. matrices. 

The empirical relative frequency matrices are used 

Most of the matrix testing procedures, however, are valid only for 

theoretical probabilities greater than zero. 

frequencies in an observed distribution that is being tested for fit 

by a theoretical distribution is empirical and therefore subject to 

error. The evaluation of the degrees of freedom of a system becomes 

extremely tedious when there are zero cells in a matrix because each 

component of the system must be treated separately. Finally, forecast 

schemes that allow a zero probability of occurrence for some classes 

-not at all satisfying. 

The correction for zero 

One obvious method of alleviating some of the above problems 

is to use a larger sample. 

data will soon be available at ESSA-EX-NWRC. 

though, whether the 5 0  percent increase in data over the present study 

w i l l  be enough to stabilize the systems and to eliminate the cell 

Twelve years of serially complete wind 

It is questionable, 
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frequencies of zero. 

quency d is t r ibu t ions  i n  matrices of ones before determining r e l a t i v e  

frequencies. 

than in tu i t i ve ly ,  the  embedding process approximates a continuous 

d is t r ibu t ion  and the  problem of zero c e l l  frequencies would be 

eliminated. This fea ture  w i l l  be studied. 

Another method i s  t o  embed the observed f r e -  

Although t h i s  technique i s  l e s s  sa t i s fy ing  theo re t i ca l ly  

Per iodic i t ies  within the data may be hindering the  effectiveness 

of the  Markov predict ion schemes. It i s  suggested tha t  spectra  o r  

harmonic analyses be made on the  data t o  determine i f  s ign i f icant  

cyc l i ca l  influences a re  present.  

moved from the  data se r i e s ,  and the  res idua l  series should be studied. 

The forecast  scheme then w i l l  consis t  of a component from the s ign i f i -  

cant cycles and a component from the res idua l  s e r i e s .  

w i l l  be studied. 

If so,  these cycles should be re-  

T h i s  fea ture  

Another problem concerns the  r e l i a b i l i t y  of the empirical  t r a n s i t i o n  

probabi l i ty  matrices. 

a l l  of the probabi l i t i es .  Perhaps binomial o r  multinomial probabi l i ty  

theory can be applied fur ther  i n  the solut ion of t h i s  problem. Future 

invest igat ion a l so  should be made t o  determine the c r i t i c a l  l eve l s  f o r  

accepting or  not accepting t h e  hypotheses tested by t h e  metric tests.  

Confidence bounds need t o  be established on 

The capacity of the present and planned e lec t ronic  computers a t  

ESSA-EDS-NWRC severely r e s t r i c t s  the  study of processes of order grea te r  

than one or two f o r  more than a few states. The s i z e  of matrices and 

the number of combinations of possible  events increase very rapidly 

as the  number of s t a t e s  and/or orders increases .  T h i s  expansion 

quickly causes the limits of the  computer to be exceeded and makes 

the  task of manually processing the data monumental. It i s  recommended, 

c 

70 



however, that higher order processes should be studied f o r  a t  l e a s t  

the 6- and 11-state  systems. 

In view of the aforementioned problems this study can be con- 

sidered a s  a first s tep  towards the  predict ion by the use of Markov 

techniques of the maximum winds i n  the  10-15 lan layer  over Cape 

Kennedy, Florida.  

in part discouraging. 

s i s tence  and holds promise fo r  b e t t e r  prediction. 

more invest igat ion w i l l  the  merits of the  Markov technique as applied 

t o  the  maximum winds be able t o  be assessed fu l ly .  

The results herein are i n  par t  encouraging and 

A t  l e a s t  the technique does a s  well as per- 

Only after much 
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