655 research outputs found
The Narcea Antiform Structure and its relation to the Western Cantabrian Zone thrust sheets. Part II: The Eastern Sector
In the eastern part of the Narcea Antiform, the Narcea Tectonic Window, only one cleavage developes, which is axial plane to vertical hinge folds. This foliation does not continue into the overlying unconformable Herrería Formation, Cambrian in age. The contact between these two formations is a fault running along the unconformity plane, which may produce spaced foliations in the hangingwall rocks at high angle with precambrian rocks cleavage.Both, fault and cleavage are due to a variscan deformation event, partition of the deformation occurs at the unconformity, revealing different theological behaviours and different original orientations. The limit between these western and the eastern units is a major thrust./nThe Somiedo Unit, the westernmost of the allochton ones in the Cantabrian Zone, has been known for long. It is formed by four main units, developed during the so called first thrust generation, which has a basal thrust, showing staircase trajectories, below the Láncara formation, except in the westernmost part of the unit where it deepens into the precambrian rocks, being the only part of the Cantabrian Zone where the rooting of this units can be seen. This ramp produces a culmination over it and causes the antiform. Another generation of thrusts can be seen, the second one, which crosscuts the first ones and affects not only Somiedo Unit but Narcea Antiform as well. The second generation ones do not depict staircase trajectories, listric ones are common, and have much less displacement than the first generation ones. These listric reverse faults modify the first generation pattern, and causes Narcea Antiform re-folding./nThe relations between all these units are complex, and a tentative correlation between the two deformation phases at the WALZ, and the first thrust generation, at the CZ, has been done. The second thrusting stage is responsible for the final disposition of structures at the CZ and the WALZ.En el sector oriental del Antiforme del Narcea, denominado Ventana Tectónica del Narcea, existe una foliación que es de plano axial de pliegues con ejes verticales. Esta foliación no se continúa en la formación suprayacente, la Formación Herrería El contacto entre estas dos formaciones es un despegue que discurre por el plano de discordancia y que puede producir foliación espaciada en la parte baja de la Formación Herrería, formando un elevado ángulo con la foliación existente en las rocas precámbricas. Tanto el despegue como las foliaciones en este sector, están asociadas auna deformación varisca que pone de manifiesto el contraste de competencias y la diferente orientación original entre las rocas implicadas./nLa Unidad de Somiedo es la más occidental de las unidades alóctonas de la Zona Cantábrica, y se conoce desde Ios años 50. Está formada por cuatro escamas principales, emplazadas durante la denominada primera generación de cabalgamientos, que tienen una geometría en escalera el cabalgamiento basal se encuentra por debajo de la Formación Láncara, excepto en el sector más occidental, donde profundiza hasta las rocas precámbricas, siendo el único lugar de la ZC donde se observa el enraizamiento de estas unidades. Esta rampa produce una culminación y es la causa del Antiforme. Se observa otra generación de cabalgamientos, que corta a los previos y afecta no sólo a la Unidad de Somiedo, sino también a su autóctono aflorante en la Ventana Tectónica del Narcea. Estos cabalgamientos no muestran trayectorias en escalera, sino geometrías lístncas, tienen desplazamientos pequeños, y modifican el patrón generado durante la primera fase de deformación y amplifican el Antiforme del Narcea./nLas relaciones entre todas las unidades son complejas; se ha realizado una correlación interpretativa entre las dos fases de deformación de la ZAOL y la primera fase de cabalgamientos de la ZC. La segunda fase de deformación sería la respondable de la disposición final de las estructuras de la ZC y la ZAOL
Foreword : the Ediacaran-early Palaeozoic Cadomian zircon province fringing Northwest Gondwana
This special issue grew out of the "The Panafrican and Cadomian orogenies in North Africa and western Europe" meeting, held online in June 2021. It includes a selection of contributions presented at the workshop with the aim of covering a broad range of challenges derived from the application of the Cadomian zircon province concept
The Ediacaran-early Palaeozoic Cadomian zircon province fringing Northwest Gondwana
publishersversionpublishe
The importance of along-margin terrane transport in northern Gondwana: insights from detrital zircon parentage in Neoproterozoic rocks from Iberia and Brittany
Detrital zircons from late Neoproterozoic rocks of the peri-Gondwanan Cadomian belt of SW Iberia and north Armorican Domain of Brittany record Neoproterozoic (ca. 860-550 Ma), Palaeoproterozoic (ca. 2300-1800) and Archaean (ca 3300-2600 Ma) U-Pb ages. The absence of Mesoproterozoic zircons suggests that these terranes evolved in a peri-W African realm. This is in contrast to other western European terranes that preserve Mesoproterozoic zircons and are likely to have evolved in a peri-Amazonian realm. Such a contrast in detrital zircon populations, coupled with the presence of Mesoproterozoic zircons in the Ordovician Armorican quartzite, deposited in a peri-African platform, is interpreted to record along-margin terrane transport. The change in provenance suggests that subduction was replaced by transform faults that juxtaposed Amazonia-derived terranes against W Africa-derived terranes to form the Avalonia and Armorica microcontinents. Subsequent extension along the margin resulted in the birth of the Rheic Ocean and the outboard drift of Avalonia
Post-collisional batholiths do contribute to continental growth
This work was supported through the Spanish Research Agency
(AEI) Grant N◦ PGC2018-096534-B-I00 (Proyecto IBERCRUST). We
acknowledge the support received from the Instituto Andaluz de
Ciencias de la Tierra (CSIC - UGR) and its staff for the installa-
tion of a high-pressure laboratory. We are particularly grateful to
Taras Gerya and Mike Fowler for their positive and constructive
feedback. We also want to thank Rosemary Hickey-Vargas for her
handling of this manuscript.Supplementary material related to this article can be found on-
line at https://doi.org/10.1016/j.epsl.2022.117978Post-collisional voluminous silicic magmatism is represented in most orogens across the world in the
form of large granodiorite batholiths and minor intermediate and mafic intrusions, postdating 5-30 Ma
the age of the collisional paroxysm responsible of the main mountain building events. Post-collisional
mafic intrusions are acknowledged as a mechanism that contributes to long-term yet minor continental
growth. The silicic magmas forming the large batholiths, however, have been dismissed from the
crustal growth discussion due to bias in the conception that they always generate by recycling older
lower crustal igneous rocks. Contrary to this, geochemical and isotopic relations together with new
experimental data provided in this paper suggest that the post-collisional signature can be reproduced
without the implication of a crustal component, supporting a potential common origin for the two suites,
intermediate and silicic. That is, both suites can be derived from a metasomatized mantle source, thus
representing the injection of largely juvenile material to produce new continental crust. This inference is
contextualized within the supercontinent cycle, showing that the timing of post-collisional magmatism
accounts for the generation and preservation rates predicted by the existing models, since both reach
maximum values in the amalgamation-collisional stage of the supercontinent cycle, rather than in
the subduction stage. All together these inferences lead to think that post-Archean, post-collisional
magmatism has been significantly underestimated when computing continental crustal growth through
time.Spanish Government
PGC2018-096534-B-I0
Direct synthesis of β-ketophosphonates and vinyl phosphonates from alkenes or alkynes catalyzed by CuNPs/ZnO
Copper nanoparticles (CuNPs) supported on ZnO have been shown to effectively catalyze the direct synthesis of β-ketophosphonates from alkenes or alkynes, and that of vinyl phosphonates from alkynes and diethylphosphite, under air and in the absence of any additive or ligand. When using alkynes as starting materials, the selectivity proved to be dependent on the nature of the alkyne. Thus, alkynes conjugated with an aromatic ring or a carbon–carbon double bond gave β-ketophosphonates as the main reaction products, whereas aliphatic alkynes or alkynes conjugated with a carbonyl group led to the formation of the corresponding vinyl phosphonates.This work was generously supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Universidad Nacional del Sur (UNS) from Argentina. V. G. thanks the CONICET for a postdoctoral fellowship
New ideas on the Proterozoic-Early Palaeozoic evolution of NW Iberia: insights from U–Pb detrital zircon ages
U–Pb ages were obtained on single detrital zircon grains separated from six samples of Neoproterozoic and Lower Palaeozoic sedimentary and volcanosedimentary rocks from NW Iberia using the laser ablation microprobe-inductively coupled plasma mass spectrometry (LAM-ICP-MS) method. Precambrian greywackes yielded abundant zircons with Neoproterozoic (800–640 Ma) and Mesoproterozoic (0.9–1.2 Ga) ages, and a smaller proportion of Palaeoproterozoic (1.8–2 Ga) and Archaean zircons. Palaeozoic samples (Lower Cambrian and Ordovician) yielded abundant zircons with younger Neoproterozoic (ca. 550 and 620 Ma) and Mesoproterozoic (0.9–1.2 Ga) ages. Palaeoproterozoic (1.8–2 Ga) and Archaean zircons were also found. This data set, used in conjuction with previous paleogeographic and isotopic studies sheds new light on the Precambrian-early Palaeozoic evolution of NW Iberia and is consistent with the following sequence of events: (1) Early Cadomian-Avalonian subduction and arc construction (ca. 800–640 Ma). This magmatic episode created the main arc edifice (Avalonia); (2) full development of a back arc basin upon which the Neoproterozoic sediments were deposited (ca. 640–640 Ma). The combined U–Pb ages of detrital zircons and Nd isotopic features of these sedimenary rocks suggest that they were mostly shed from the main magmatic arc. On the basis of the presence of Grenvillian age detrital zircons with short waterborne transport before incorporation in the sediment, we propose that the basin was possibly located in a peri-Amazonian realm close to West Avalonian terranes. These basins were developed upon a cratonic basement that possibly involved both Grenvillian (ca. 0.9–1.2 Ga) and Transamazonian (ca. 1.9–2.1) igneous rocks. The reported zircon ages suggest a long-lived subduction, starting at ca. 800 Ma and terminated by ca. 580–570 Ma with no geological record of a final collision event; (3) the continuation of extension gave rise to the undocking of Avalonia from the back-arc. Detrital zircon ages in Lowermost Cambrian strata suggest that the main arc edifice had drifted away by ca. 550–540 Ma and was no longer shedding detritus into the back-arc basin. (4) During the Lower Ordovician, further extension of an already thinned crust gave rise to the Lower Ordovician ‘Ollo de Sapo’ magmatic event (ca. 480 Ma). Coeval volcanism in neighbouring areas displaying within-plate geochemical signatures is consistent with an extensional setting for the generation of the Lower Ordovician igneous and sedimentary rocks. Detrital zircon ages and Nd isotopic features of the Ordovician greywackes reflect both an increase in the contribution from older crustal components and the addition of newly accreted crust. A progressively thinning crust is a likely scenario that would explain the simultaneous exhumation of lower crustal (Grenvillian+Transamazonian/Icartian) material and the generation of coeval magmatism. This latter scenario is consistent with models proposed for other circum-North Atlantic Avalonian-Cadomian terranes where repeated episodes of melting occurred in response to subduction and subsequent rifting events
Classroom 3.0: a new way to learn geology. Building 3D models using Trinio and Sketchfab Smart-phone apps
[ES] Los teléfonos móviles o Smart-phones representan uno de los objetos más temidos por
los profesores en el aula. Relacionados con la distracción y la pérdida de tiempo, han
logrado adquirir una mala fama en el ambiente educativo. Sin embargo, estos dispositivos
pueden ser utilizados en el aula de ciencias con un objetivo muy distinto: mejorar el
rendimiento académico y aumentar la motivación del alumnado intercambiando recursos
físicos (ejemplares “de visu”) diferentes, disponibles en distintos centros. Presentamos
el uso de recursos digitales para la elaboración de actividades prácticas y la creación de
un laboratorio virtual de ciencias de la naturaleza. La elaboración de modelos 3D con
la aplicación móvil (App) Trnio® permite generar fácilmente modelos fotorealísticos de
minerales, rocas, estructuras geológicas y fósiles. Este tipo de herramientas contribuye
al aprendizaje constructivista e impulsa el trabajo cooperativo, aumentando la visión
espacial de nuestro alumnado. La posibilidad de utilizar internet móvil o una red Wifi
permite exportar directamente los objetos capturados a partir de fotografías y elaborar un
aula virtual a través de Sketchfab®, en la que se pueden compartir recursos de diferentes
centros educativos, ampliando las colecciones de manera virtual y favoreciendo la
ejecución de actividades colaborativas entre los mismos.[EN] MMobile phones (smartphones) are some of the objects teachers are most afraid of in the
classroom. They have acquired a bad reputation in the educational environment, usually
related to distractions and waste of time. However, these devices can be used in the science
classroom with a very different goal: to improve the academic performance and increase
the students’ motivation. We introduce the use of digital resources for conducting practical
activities and the creation of a Natural Sciences virtual laboratory. Developing 3D models
with the mobile application Trnio© means easily generating photorealistic models of rocks,
geological structures and fossils. This type of tool contributes to constructivist learning and
drives cooperative work, improving the students’ spatial vision. If it is possible to use mobile
internet or a Wifi network the objects captured from photographs can be directly exported,
and a virtual classroom set up with Sketchfab©.S
- …