35 research outputs found

    Sensitive detection of Aβ protofibrils by proximity ligation - relevance for Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein aggregation plays important roles in several neurodegenerative disorders. For instance, insoluble aggregates of phosphorylated tau and of Aβ peptides are cornerstones in the pathology of Alzheimer's disease. Soluble protein aggregates are therefore potential diagnostic and prognostic biomarkers for their cognate disorders. Detection of the aggregated species requires sensitive tools that efficiently discriminate them from monomers of the same proteins. Here we have established a proximity ligation assay (PLA) for specific and sensitive detection of Aβ protofibrils via simultaneous recognition of three identical determinants present in the aggregates. PLA is a versatile technology in which the requirement for multiple target recognitions is combined with the ability to translate signals from detected target molecules to amplifiable DNA strands, providing very high specificity and sensitivity.</p> <p>Results</p> <p>For specific detection of Aβ protofibrils we have used a monoclonal antibody, mAb158, selective for Aβ protofibrils in a modified PLA, where the same monoclonal antibody was used for the three classes of affinity reagents required in the assay. These reagents were used for detection of soluble Aβ aggregates in solid-phase reactions, allowing detection of just 0.1 pg/ml Aβ protofibrils, and with a dynamic range greater than six orders of magnitude. Compared to a sandwich ELISA setup of the same antibody the PLA increases the sensitivity of the Aβ protofibril detection by up to 25-fold. The assay was used to measure soluble Aβ aggregates in brain homogenates from mice transgenic for a human allele predisposing to Aβ aggregation.</p> <p>Conclusions</p> <p>The proximity ligation assay is a versatile analytical technology for proteins, which can provide highly sensitive and specific detection of Aβ aggregates - and by implication other protein aggregates of relevance in Alzheimer's disease and other neurodegenerative disorders.</p

    Interferon regulatory factor 5 (IRF5) gene variants are associated with multiple sclerosis in three distinct populations

    Get PDF
    Background: IRF5 is a transcription factor involved both in the type I interferon and the toll-like receptor signalling pathways. Previously, IRF5 has been found to be associated with systemic lupus erythematosus, rheumatoid arthritis and inflammatory bowel diseases. Here we investigated whether polymorphisms in the IRF5 gene would be associated with yet another disease with features of autoimmunity, multiple sclerosis (MS). Methods: We genotyped nine single nucleotide polymorphisms and one insertion-deletion polymorphism in the IRF5 gene in a collection of 2337 patients with MS and 2813 controls from three populations: two case-control cohorts from Spain and Sweden, and a set of MS trio families from Finland. Results: Two single nucleotide polymorphism (SNPs) (rs4728142, rs3807306), and a 5 bp insertion-deletion polymorphism located in the promoter and first intron of the IRF5 gene, showed association signals with values of p<0.001 when the data from all cohorts were combined. The predisposing alleles were present on the same common haplotype in all populations. Using electrophoretic mobility shift assays we observed allele specific differences in protein binding for the SNP rs4728142 and the 5 bp indel, and by a proximity ligation assay we demonstrated increased binding of the transcription factor SP1 to the risk allele of the 5 bp indel. Conclusion: These findings add IRF5 to the short list of genes shown to be associated with MS in more than one population. Our study adds to the evidence that there might be genes or pathways that are common in multiple autoimmune diseases, and that the type I interferon system is likely to be involved in the development of these diseases.Peer Reviewe

    PathogenMip Assay: A Multiplex Pathogen Detection Assay

    Get PDF
    The Molecular Inversion Probe (MIP) assay has been previously applied to a large-scale human SNP detection. Here we describe the PathogenMip Assay, a complete protocol for probe production and applied approaches to pathogen detection. We have demonstrated the utility of this assay with an initial set of 24 probes targeting the most clinically relevant HPV genotypes associated with cervical cancer progression. Probe construction was based on a novel, cost-effective, ligase-based protocol. The assay was validated by performing pyrosequencing and Microarray chip detection in parallel experiments. HPV plasmids were used to validate sensitivity and selectivity of the assay. In addition, 20 genomic DNA extracts from primary tumors were genotyped with the PathogenMip Assay results and were in 100% agreement with conventional sequencing using an L1-based HPV genotyping protocol. The PathogenMip Assay is a widely accessible protocol for producing and using highly discriminating probes, with experimentally validated results in pathogen genotyping, which could potentially be applied to the detection and characterization of any microbe

    Data-analysis strategies for image-based cell profiling

    Get PDF
    Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.Peer reviewe

    Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities

    No full text
    Platelet-derived growth factor-B (PDGFB) is necessary for normal cardiovascular development, but the relative importance of different cellular sources of PDGFB has not been established. Using Cre-lox techniques, we show here that genetic ablation of Pdgfb in endothelial cells leads to impaired recruitment of pericytes to blood vessels. The endothelium-restricted Pdgfb knockout mutants also developed organ defects including cardiac, placental and renal abnormalities. These defects were similar to those observed in Pdgfb null mice. However, in marked contrast to the embryonic lethality of Pdgfb null mutants, the endothelium-specific mutants survived into adulthood with persistent pathological changes, including brain microhemorrhages, focal astrogliosis, and kidney glomerulus abnormalities. This spectrum of pathological changes is reminiscent of diabetic microangiopathy, suggesting that the endothelium-restricted Pdgfb knockouts may serve as models for some of the pathogenic events of vascular complications to diabetes

    Proximity Ligation Assay (PLA) to Evaluate DISC and MISC Composition

    No full text
    International audienceDistribution of the death receptor CD95 into lipid rafts (aggregation) and/or its internalization may contribute to the implementation of the apoptotic signal at the detriment of the non-apoptotic signaling pathway [1-6]. Also CD95 can form different protein complexes via dynamic protein-protein interactions (PPIs) according to its interaction with soluble or transmembrane CD95L. Therefore, spatiotemporal identification of these PPIs is pivotal to anticipate the signaling pathway implemented in cells stimulated with different forms of CD95L. Also, many disorders result from dysfunctions in terms of PPI subcellular distribution and/or their intensity, rendering evaluation of these features crucial to better understand pathogenesis.In situ proximity ligation assay (PLA) is a methodology that offers the possibility to identify PPIs and to determine where these PPIs occur in subcellular location (Fig. 1). Moreover, based on imaging, this method allows a quantification of PPIs at the cellular level and with a higher specificity than classical immunofluorescence assays. We here describe PLA used to confirm CD95/FADD interaction, a protocol that may serve to highlight other CD95 partners

    Cytokine detection by antibody-based proximity ligation

    No full text
    Efficient and precise detection techniques, along with extensive repertoires of specific binding reagents, will be needed to meet the challenges of proteome analyses. The recently established proximity ligation mechanism enables sensitive high-capacity protein measurements by converting the detection of specific proteins to the analysis of DNA sequences. Proximity probes containing oligonucleotide extensions are designed to bind pairwise to target proteins and to form amplifiable tag sequences by ligation when brought in proximity. In our previous report, both the ligatable arms and the protein binders were DNA molecules. We now generalize the method by providing simple and convenient protocols to convert any polyclonal antibodies or matched pair of monoclonal antibodies to proximity probe sets through the attachment of oligonucleotide sequences. Sufficient reagent for >100,000 proximity ligation assays can be prepared from 1 μg of antibody. The technique is applied to measure cytokines in a homogenous test format with femtomolar detection sensitivities in 1-μl samples, and we exemplify its utility in situations when only minute sample amounts are available

    Recent progress in developing proximity ligation assays for pathogen detection

    No full text
    The effective management of infectious diseases depends on the early detection of the microbes responsible, since pathogens are most effectively eliminated in the initial stages of infection. Current immunodiagnostic methods lack the sensitivity for earliest possible diagnosis. Nucleic acid-based tests (NATs) are more sensitive, but the detection of microbial DNA does not definitively prove the presence of a viable microorganism capable of causing a given infection. Proximity assays combine the specificity of antibody-based detection of proteins with the sensitivity and dynamic range of NATs, and their use may allow earlier as well as more clinically relevant detection than is possible with current NATs or immunoassays. However, the full potential of proximity assays for pathogen detection remains to be fulfilled, mainly due to the challenges associated with identifying suitable antibodies and antibody combinations, sensitivity issues arising from non-specific interactions of proximity probes and the longer incubation times required to carry out the assays
    corecore