93 research outputs found

    Spatial chaos in weakly dispersive and viscous media: a nonperturbative theory of the driven KdV-Burgers equation

    Full text link
    The asymptotic travelling wave solution of the KdV-Burgers equation driven by the long scale periodic driver is constructed. The solution represents a shock-train in which the quasi-periodic sequence of dispersive shocks or soliton chains is interspersed by smoothly varying regions. It is shown that the periodic solution which has the spatial driver period undergoes period doublings as the governing parameter changes. Two types of chaotic behavior are considered. The first type is a weak chaos, where only a small chaotic deviation from the periodic solution occurs. The second type corresponds to the developed chaos where the solution ``ignores'' the driver period and represents a random sequence of uncorrelated shocks. In the case of weak chaos the shock coordinate being repeatedly mapped over the driver period moves on a chaotic attractor, while in the case of developed chaos it moves on a repellor. Both solutions depend on a parameter indicating the reference shock position in the shock-train. The structure of a one dimensional set to which this parameter belongs is investigated. This set contains measure one intervals around the fixed points in the case of periodic or weakly chaotic solutions and it becomes a fractal in the case of strong chaos. The capacity dimension of this set is calculated.Comment: 32 pages, 12 PostScript figures, useses elsart.sty and boxedeps.tex, fig.11 is not included and can be requested from <[email protected]

    Conductance of a Quantum Point Contact in the presence of a Scanning Probe Microscope Tip

    Get PDF
    Using the recursive Green's function technique, we study the coherent electron conductance of a quantum point contact in the presence of a scanning probe microscope tip. Images of the coherent fringe inside a quantum point contact for different widths are obtained. It is found that the conductance of a specific channel is reduced while other channels are not affected as long as the tip is located at the positions correspending to that channel. Moreover, the coherent fringe is smoothed out by increasing the temperature or the voltage across the device. Our results are consistent with the experiments reported by Topinka et al.[Science 289, 2323 (2000)].Comment: 5 page

    The boson peak in structural and orientational glasses of simple alcohols: Specific heat at low temperatures

    Full text link
    We review in this work specific-heat experiments, that we have conducted on different hydrogen-bonded glasses during last years. Specifically, we have measured the low-temperature specific heat Cp for a set of glassy alcohols: normal and fully-deuterated ethanol, 1- and 2- propanol, and glycerol. Ethanol exhibits a very interesting polymorphism presenting three different solid phases at low temperature: a fully-ordered (monoclinic) crystal, an orientationally-disordered (cubic) crystal or 'orientational glass', and the ordinary structural glass. By measuring and comparing the low-temperature specific heat of the three phases, in the 'boson peak' range 2-10 K as well as in the tunneling-states range below 1K, we are able to provide a quantitative confirmation that ''glassy behavior'' is not an exclusive property of amorphous solids. On the other hand, propanol is the simplest monoalcohol with two different stereoisomers (1- and 2-propanol), what allows us to study directly the influence of the spatial rearrangement of atoms on the universal properties of glasses. We have measured the specific heat of both isomers, finding a noteworthy quantitative difference between them. Finally, low-temperature specific-heat data of glassy glycerol have also been obtained. Here we propose a simple method based upon the soft-potential model to analyze low-temperature specific-heat measurements, and we use this method for a quantitative comparison of all these data of glassy alcohols and as a stringent test of several universal correlations and scaling laws suggested in the literature. In particular, we find that the interstitialcy model for the boson peak [A. V. Granato, Phys. Rev. Lett. 68 (1992) 974] gives a very good account of the temperature at which the maximum in Cp/T^3 occurs.Comment: 16 pages, 2 figures, Proceedings of the 4th International Discussion Meeting on Relaxations in Complex Systems, Hersonissos (Crete), June 2001. Journal of Non-Crystalline Solids (accepted for publication

    Interaction of quasilocal harmonic modes and boson peak in glasses

    Full text link
    The direct proportionality relation between the boson peak maximum in glasses, ωb\omega_b, and the Ioffe-Regel crossover frequency for phonons, ωd\omega_d, is established. For several investigated materials ωb=(1.5±0.1)ωd\omega_b = (1.5\pm 0.1)\omega_d. At the frequency ωd\omega_d the mean free path of the phonons ll becomes equal to their wavelength because of strong resonant scattering on quasilocal harmonic oscillators. Above this frequency phonons cease to exist. We prove that the established correlation between ωb\omega_b and ωd\omega_d holds in the general case and is a direct consequence of bilinear coupling of quasilocal oscillators with the strain field.Comment: RevTex, 4 pages, 1 figur

    Inter- and intragrain currents in bulk melt-grown YBaCuO rings

    Full text link
    A simple contactless method suitable to discern between the intergrain (circular) current, which flows in the thin superconducting ring, and the intragrain current, which does not cross the weakest link, has been proposed. At first, we show that the intergrain current may directly be estimated from the magnetic flux density B(±z0)B(\pm z_0) measured by the Hall sensor positioned in the special points ±z0\pm z_0 above/below the ring center. The experimental and the numerical techniques to determine the value z0z_0 are discussed. Being very promising for characterization of a current flowing across the joints in welded YBaCuO rings (its dependencies on the temperature and the external magnetic field as well as the time dissipation), the approach has been applied to study corresponding properties of the intra- and intergrain currents flowing across the aa-twisted grain boundaries which are frequent in bulk melt-textured YBaCuO samples. We present experimental data related to the flux penetration inside a bore of MT YBaCuO rings both in the non-magnetized, virgin state and during the field reversal. The shielding properties and their dependence on external magnetic fields are also studied. Besides, we consider the flux creep effects and their influence on the current re-distribution during a dwell.Comment: 13 pages, 16 figures (EPS), RevTeX4. In the revised version, corrections to perturbing effects near the weak links are introduced, one more figure is added. lin

    COMPENSATING FOR TURBOFAN COMPONENTS DEGRADATION THROUGH AN ENGINE LIFECYCLE BY CONTROL METHODS

    Get PDF
    It describes an approach to improve performance of a deteriorated gas turbine engine, based on the use of thrust estimates in automatic control system algorithms

    Nonlinear dynamics of soft boson collective excitations in hot QCD plasma III: bremsstrahlung and energy losses

    Full text link
    Within of the framework of semiclassical approximation a general formalism for deriving an effective current generating bremsstrahlung of arbitrary number of soft gluons (longitudinal or transverse ones) in scattering of higher-energy parton off thermal parton in hot quark-gluon plasma with subsequent extension to two and more scatterers, is obtained. For the case of static color centers an expression for energy loss induced by usual bremsstrahlung of lowest-order with allowance for an effective temperature-induced gluon mass and finite mass of the projectile (heavy quark), is derived. The detailed analysis of contribution to radiation energy loss associated with existence of effective three-gluon vertex induced by hot QCD medium, is performed. It is shown that in general, the bremsstrahlung associated with this vertex have no sharp direction (as in the case of usual bremsstrahlung) and therefore here, we can expect an absence of suppression effect due to multiple scattering. For the case of two color static scattering centers it was shown that the problem of calculation of bremsstrahlung induced by four-gluon hard thermal loop (HTL) vertex correction can be reduced to the problem of the calculation of bremsstrahlung induced by three-gluon HTL correction. It was shown that for limiting value of soft gluon occupation number Nk1/αsN_{\bf k}\sim 1/\alpha_s all higher processes of bremsstrahlung of arbitrary number of soft gluons become of the same order in coupling, and the problem of resummation of all relevant contributions to radiation energy loss of fast parton, arises. An explicit expression for matrix element of two soft gluon bremsstrahlung in small angles approximation is obtained.Comment: 68 pages, 9 EPS figures; added new sections 8, 10 and reference

    Voronoi-Delaunay analysis of normal modes in a simple model glass

    Full text link
    We combine a conventional harmonic analysis of vibrations in a one-atomic model glass of soft spheres with a Voronoi-Delaunay geometrical analysis of the structure. ``Structure potentials'' (tetragonality, sphericity or perfectness) are introduced to describe the shape of the local atomic configurations (Delaunay simplices) as function of the atomic coordinates. Apart from the highest and lowest frequencies the amplitude weighted ``structure potential'' varies only little with frequency. The movement of atoms in soft modes causes transitions between different ``perfect'' realizations of local structure. As for the potential energy a dynamic matrix can be defined for the ``structure potential''. Its expectation value with respect to the vibrational modes increases nearly linearly with frequency and shows a clear indication of the boson peak. The structure eigenvectors of this dynamical matrix are strongly correlated to the vibrational ones. Four subgroups of modes can be distinguished

    Bosonic Excitations in Random Media

    Full text link
    We consider classical normal modes and non-interacting bosonic excitations in disordered systems. We emphasise generic aspects of such problems and parallels with disordered, non-interacting systems of fermions, and discuss in particular the relevance for bosonic excitations of symmetry classes known in the fermionic context. We also stress important differences between bosonic and fermionic problems. One of these follows from the fact that ground state stability of a system requires all bosonic excitation energy levels to be positive, while stability in systems of non-interacting fermions is ensured by the exclusion principle, whatever the single-particle energies. As a consequence, simple models of uncorrelated disorder are less useful for bosonic systems than for fermionic ones, and it is generally important to study the excitation spectrum in conjunction with the problem of constructing a disorder-dependent ground state: we show how a mapping to an operator with chiral symmetry provides a useful tool for doing this. A second difference involves the distinction for bosonic systems between excitations which are Goldstone modes and those which are not. In the case of Goldstone modes we review established results illustrating the fact that disorder decouples from excitations in the low frequency limit, above a critical dimension dcd_c, which in different circumstances takes the values dc=2d_c=2 and dc=0d_c=0. For bosonic excitations which are not Goldstone modes, we argue that an excitation density varying with frequency as ρ(ω)ω4\rho(\omega) \propto \omega^4 is a universal feature in systems with ground states that depend on the disorder realisation. We illustrate our conclusions with extensive analytical and some numerical calculations for a variety of models in one dimension

    Quantum anti-centrifugal force

    Full text link
    In a two-dimensional world a free quantum particle of vanishing angular momentum experiences an attractive force. This force originates from a modification of the classical centrifugal force due to the wave nature of the particle. For positive energies the quantum anti-centrifugal force manifests itself in a bunching of the nodes of the energy wave functions towards the origin. For negative energies this force is sufficient to create a bound state in a two-dimensional delta function potential. In a counter-intuitive way the attractive force pushes the particle away from the location of the delta function potential. As a consequence, the particle is localized in a band-shaped domain around the originComment: 8 pages, including three eps figures, submitted to Phys. Rev. A. Figures substitute
    corecore