The asymptotic travelling wave solution of the KdV-Burgers equation driven by
the long scale periodic driver is constructed. The solution represents a
shock-train in which the quasi-periodic sequence of dispersive shocks or
soliton chains is interspersed by smoothly varying regions. It is shown that
the periodic solution which has the spatial driver period undergoes period
doublings as the governing parameter changes. Two types of chaotic behavior are
considered. The first type is a weak chaos, where only a small chaotic
deviation from the periodic solution occurs. The second type corresponds to the
developed chaos where the solution ``ignores'' the driver period and represents
a random sequence of uncorrelated shocks. In the case of weak chaos the shock
coordinate being repeatedly mapped over the driver period moves on a chaotic
attractor, while in the case of developed chaos it moves on a repellor. Both
solutions depend on a parameter indicating the reference shock position in the
shock-train. The structure of a one dimensional set to which this parameter
belongs is investigated. This set contains measure one intervals around the
fixed points in the case of periodic or weakly chaotic solutions and it becomes
a fractal in the case of strong chaos. The capacity dimension of this set is
calculated.Comment: 32 pages, 12 PostScript figures, useses elsart.sty and boxedeps.tex,
fig.11 is not included and can be requested from <[email protected]