12 research outputs found

    White noise speech illusions: A trait-dependent risk marker for psychotic disorder?

    Get PDF
    Introduction: White noise speech illusions index liability for psychotic disorder in case-control comparisons. In the current study, we examined i) the rate of white noise speech illusions in siblings of patients with psychotic disorder and ii) to what degree this rate would be contingent on exposure to known environmental risk factors (childhood adversity and recent life events) and level of known endophenotypic dimensions of psychotic disorder [psychotic experiences assessed with the Community Assessment of Psychic Experiences (CAPE) scale and cognitive ability]. Methods: The white noise task was used as an experimental paradigm to elicit and measure speech illusions in 1,014 patients with psychotic disorders, 1,157 siblings, and 1,507 healthy participants. We examined associations between speech illusions and increasing familial risk (control -> sibling -> patient), modeled as both a linear and a categorical effect, and associations between speech illusions and level of childhood adversities and life events as well as with CAPE scores and cognitive ability scores. Results: While a positive association was found between white noise speech illusions across hypothesized increasing levels of familial risk (controls -> siblings -> patients) [odds ratio (OR) linear 1.11, 95% confidence interval (CI) 1.02-1.21, p = 0.019], there was no evidence for a categorical association with sibling status (OR 0.93, 95% CI 0.79-1.09, p = 0.360). The association between speech illusions and linear familial risk was greater if scores on the CAPE positive scale were higher (p interaction = 0.003; ORlow CAPE positive scale 0.96, 95% CI 0.85-1.07; ORhigh CAPE positive scale 1.26, 95% CI 1.09-1.46); cognitive ability was lower (p interaction < 0.001; ORhigh cognitive ability 0.94, 95% CI 0.84-1.05; ORlow cognitive ability 1.43, 95% CI 1.23-1.68); and exposure to childhood adversity was higher (p interaction < 0.001; ORlow adversity 0.92, 95% CI 0.82-1.04; ORhigh adversity 1.31, 95% CI 1.13-1.52). A similar, although less marked, pattern was seen for categorical patient-control and sibling-control comparisons. Exposure to recent life events did not modify the association between white noise and familial risk (p interaction = 0.232). Conclusion: The association between white noise speech illusions and familial risk is contingent on additional evidence of endophenotypic expression and of exposure to childhood adversity. Therefore, speech illusions may represent a trait-dependent risk marker

    LRP5-linked osteoporosis- pseudoglioma syndrome mimicking isolated microphthalmia

    No full text
    Microphthalmia is defined as the measurement of the total axial length of the eyeball to be below average of the two standard deviation according to the age. While several genes have been identified so far related to microphthalmia, the genetic etiology of the disease has not been fully understood because of genetic heterogeneity observed in this disease. After exclusion of the genes that had been known to be the cause of microphthalmia, we performed homozygosity mapping and exome sequencing to clarify the genetic etiology of the bilateral microphthalmia in this family. When the results of the exome and microarray data were considered together as a splice-site mutation in LRP5 gene [c. 2827 + 1G > A], which is known to be important for eye development and Wnt receptor signaling pathway, was found to be the cause of microphthalmia in our family

    Higher schizotypy predicts better metabolic profile in unaffected siblings of patients with schizophrenia

    No full text
    Rationale: Type 2 diabetes (T2D) is more frequent in schizophrenia (Sz) than in the general population. This association is partly accounted for by shared susceptibility genetic variants. Objective: We tested the hypotheses that a genetic predisposition to Sz would be associated with higher likelihood of insulin resistance (IR), and that IR would be predicted by subthreshold psychosis phenotypes. Methods: Unaffected siblings of Sz patients (n = 101) were compared with a nonclinical sample (n = 305) in terms of IR, schizotypy (SzTy), and a behavioural experiment of “jumping to conclusions”. The measures, respectively, were the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), Structured Interview for Schizotypy-Revised (SIS-R), and the Beads Task (BT). The likelihood of IR was examined in multiple regression models that included sociodemographic, metabolic, and cognitive parameters alongside group status, SIS-R scores, and BT performance. Results: Insulin resistance was less frequent in siblings (31.7%) compared to controls (43.3%) (p < 0.05), and negatively associated with SzTy, as compared among the tertile groups for the latter (p < 0.001). The regression model that examined all relevant parameters included the tSzTy tertiles, TG and HDL-C levels, and BMI, as significant predictors of IR. Lack of IR was predicted by the highest as compared to the lowest SzTy tertile [OR (95%CI): 0.43 (0.21–0.85), p = 0.015]. Conclusion: Higher dopaminergic activity may contribute to both schizotypal features and a favourable metabolic profile in the same individual. This is compatible with dopamine’s regulatory role in glucose metabolism via indirect central actions and a direct action on pancreatic insulin secretion. The relationship between dopaminergic activity and metabolic profile in Sz must be examined in longitudinal studies with younger unaffected siblings

    Biology of stem cells in human umbilical cord stroma: In situ and in vitro surveys

    No full text
    Cells in the umbilical cord stroma have gained attention in recent years; however, differentiation to certain lineages in humans has been demonstrated in few studies. Unlike bone marrow MSCs, human umbilical cord stroma cells (HUC-SCs) are far from being well characterized. This study attempts to describe proliferation, structural, and differentiation properties of these cells to account for their exceptional nature in many aspects. Cellular dynamics, cellular structure, and the degree of transformations during expansion and differentiation into mesenchymal and neuronal lineages were examined in vitro over a 10-month period. Comparisons with human bone marrow MSCs regarding differentiation were performed. HUCSCs in culture revealed two distinct cell populations, type 1 and type 2 cells, that possessed differential vimentin and cytokeratin filaments. Corresponding cells were encountered in cord sections displaying region-specific localization. alpha-Smooth muscle actin and desmin filaments, which were evident in cord sections, diminished through passages. No difference was noted regarding type 1 and type 2 cells in differentiation to chondrogenic, adipogenic, and osteogenic lineages, whereas a preferential differentiation was noted in neuronal lineage. Relative success was achieved by production of chondrocytic spheres and osteogenic monolayers, whereas adipocytes were immature compared with bone marrow MSCs. The presence of neuronal markers suggests that they transform into a certain state of maturity under neurogenic induction. Conclusively, HUCSCs retain their original phenotype in culture without spontaneous differentiation, have a limited lifespan, and bear multipotent stem cell characteristics. Given these characteristics, they may be generally considered progenitor cells if manipulated under appropriate conditions and deserve further study to be potentially used in cell-based therapies

    Examining the independent and joint effects of molecular genetic liability and environmental exposures in schizophrenia: results from the EUGEI study

    No full text
    Schizophrenia is a heritable complex phenotype associated with a background risk involving multiple common genetic variants of small effect and a multitude of environmental exposures. Early twin and family studies using proxy-genetic liability measures suggest gene-environment interaction in the etiology of schizophrenia spectrum disorders, but the molecular evidence is scarce. Here, by analyzing the main and joint associations of polygenic risk score for schizophrenia (PRS-SCZ) and environmental exposures in 1,699 patients with a diagnosis of schizophrenia spectrum disorders and 1,542 unrelated controls with no lifetime history of a diagnosis of those disorders, we provide further evidence for gene-environment interaction in schizophrenia. Evidence was found for additive interaction of molecular genetic risk state for schizophrenia (binary mode of PRS-SCZ above 75% of the control distribution) with the presence of lifetime regular cannabis use and exposure to early-life adversities (sexual abuse, emotional abuse, emotional neglect, and bullying), but not with the presence of hearing impairment, season of birth (winter birth), and exposure to physical abuse or physical neglect in childhood. The sensitivity analyses replacing the a priori PRS-SCZ at 75% with alternative cut-points (50% and 25%) confirmed the additive interaction. Our results suggest that the etiopathogenesis of schizophrenia involves genetic underpinnings that act by making individuals more sensitive to the effects of some environmental exposures.status: publishe

    Identifying gene-environment interactions in schizophrenia:contemporary challenges for integrated, large-scale investigations

    No full text
    Recent years have seen considerable progress in epidemiological and molecular genetic research into environmental and genetic factors in schizophrenia, but methodological uncertainties remain with regard to validating environmental exposures, and the population risk conferred by individual molecular genetic variants is small. There are now also a limited number of studies that have investigated molecular genetic candidate gene-environment interactions (G x E), however, so far, thorough replication of findings is rare and G x E research still faces several conceptual and methodological challenges. In this article, we aim to review these recent developments and illustrate how integrated, large-scale investigations may overcome contemporary challenges in G x E research, drawing on the example of a large, international, multi-center study into the identification and translational application of G x E in schizophrenia. While such investigations are now well underway, new challenges emerge for G x E research from late-breaking evidence that genetic variation and environmental exposures are, to a significant degree, shared across a range of psychiatric disorders, with potential overlap in phenotype
    corecore