45 research outputs found

    Adipose-Derived Fatty Acid-Binding Proteins Plasma Concentrations Are Increased in Breast Cancer Patients.

    Get PDF
    BACKGROUND: Adipose tissue is an endocrine organ that could play a role in tumor progression via its secreted adipokines. The role of adipose-derived fatty acid-binding protein (FABP) 4 and FABP5 in breast cancer is presently under study, but their circulating levels in this pathology are poorly known. We analyzed the blood concentrations of FABP4 and FABP5 in breast cancer patients to determine whether there is an association between them and breast cancer. MATERIALS AND METHODS: We studied 294 women in the oncology department with a family history of breast cancer; 198 of the women had breast cancer, and 96 were healthy controls. The levels of FABP4, FABP5, lipid profile, standard biochemical parameter, and high-sensitivity C-reactive protein (hsCRP) were determined. We analyzed the association of FABP4 and FABP5 with breast cancer, while adjusting for demographic, anthropometric, and biochemical parameters. RESULTS: Breast cancer patients had a 24.8% (p < .0001) and 11.4% (p < .05) higher blood concentration of FABP4 and FABP5, respectively. Fatty acid-binding protein 4 was positively associated with age, body mass index (BMI), FABP5, very-low-density lipoprotein cholesterol (VLDLc), non-high-density lipoprote in cholesterol (non-HDLc), Apolipoprotein B 100 (ApoB100), triglycerides, glycerol, glucose, and hsCRP (p < .05), and was negatively associated with HDLc (p < .005) in breast cancer patients. Fatty acid-binding protein 5 was positively associated with BMI, FABP4, VLDLc, triglycerides, glycerol, and hsCRP (p < .05), and was negatively associated with HDLc and Apolipoprotein AI (ApoAI) (p < .05) in breast cancer patients. Using a logistic regression analysis and adjusting for age, BMI, hsCRP, non-HDLc, and triglycerides, FABP4 was independently associated with breast cancer (odds ratio [OR]: 1.091 [95% CI: 1.037-1.149]). Moreover, total cholesterol, VLDLc, non-HDLc, ApoB100, triglycerides, and hsCRP were significantly increased in breast cancer patients (p < .005). In contrast, the non-esterified fatty acids concentrations were significantly decreased in breast cancer patients (p < .05). CONCLUSION: Circulating FABP4 and FABP5 levels were increased in breast cancer patients compared with controls. The positive association of FABP4 with breast cancer was maintained after adjusting for important covariates, while the association with FABP5 was lost. Our data reinforce the role of adipose tissue and their adipokines in breast cancer. Despite these data, further studies must be performed to better explain the prognosis or diagnostic value of these blood parameters and their possible role in breast cancer. IMPLICATIONS FOR PRACTICE: We focus on the effect of adipose tissue on cancer, which is increasingly recognized. The association between adipocyte-derived adipokines and breast cancer opens new diagnosis and therapy perspectives. In this study, we provide original data concerning FABP4 and FABP5 plasma concentrations in breast cancer patients. Compared to control group, breast cancer patients show higher FABP4 and FABP5 blood levels. Our data suggest that, particularly, circulating FABP4 levels could be considered a new independent breast cancer biomarker. Our work translates basic science data to clinic linking the relationship between adipose tissue and lipid metabolism to breast cancer

    Impact of IPDE-SQ personality disorders on the healthcare and societal costs of fibromyalgia patients: A cross-sectional study

    Get PDF
    Background: Data is lacking on comorbid personality disorders (PD) and fibromyalgia syndrome (FMS) in terms of prevalence, and associated healthcare and societal costs. The main aim of this study was to assess the prevalence of PD in FMS patients and to analyse whether the presence of comorbid PD is related to worse functional impairment and greater healthcare (medical visits, drug consumption, and medical tests) and societal costs. Methods: A cross-sectional study was performed using the baseline data of 216 FMS patients participating in a randomized, controlled trial carried out in three primary health care centres situated in the region of Barcelona, Spain. Measurement instruments included the International Personality Disorder Examination - Screening Questionnaire (IPDE-SQ), the Fibromyalgia Impact Questionnaire (FIQ), the Client Service Receipt Inventory (CSRI), and a socio-demographic questionnaire. Results: Most patients (65 %) had a potential PD according to the IPDE-SQ. The most prevalent PD were the avoidant (41.4 %), obsessive-compulsive (33.1 %), and borderline (27 %). We found statistically significant differences in functional impairment (FIQ scores) between FMS patients with potential PD vs non-PD (59.2 vs 51.1; p < 0.001). Multivariate regression analyses revealed that higher FIQ total scores and the presence of potential PD were related to more healthcare costs (primary and specialised care visits). Conclusions: As expected, PD are frequent comorbid conditions in patients with FMS. Our results suggest that the screening of comorbid PD in patients with FMS might be recommendable in order to detect potential frequent attenders to primary and specialised care

    GCIMS: An R package for untargeted gas chromatography - Ion mobility spectrometry data processing

    Full text link
    Gas-Chromatography coupled to Ion Mobility Spectrometry (GC-IMS) based metabolomics is an emerging technique for obtaining fast, reliable untargeted metabolic fingerprints of biofluids. The generated raw data is highly dimensional and complex, suffers from baseline problems, misalignments, long peak tails and strong non-linearities that must be corrected to extract chemically relevant features from samples. In this work, we present our GCIMS R package, which includes spectra loading, metadata handling, denoising, baseline correction, spectral and chromatographic alignment, peak detection, integration, and peak clustering to produce a peak table ready for multivariate data analysis. We discuss package design decisions, and, for illustration purposes, we show a case study of sex discrimination on the basis of the volatile compounds in urine samples. The GCIMS package provides a user-friendly workflow for non-code developers to process their raw data samples

    Differential regulation of the muscle-specific GLUT4 enhancer in regenerating and adult skeletal muscle

    Get PDF
    We have reported a novel functional co-operation among MyoD, myocyte enhancer factor-2 (MEF2), and the thyroid hormone receptor in a muscle-specific enhancer of the rat GLUT4 gene in muscle cells. Here, we demonstrate that the muscle-specific enhancer of the GLUT4 gene operates in skeletal muscle and is muscle fiber-dependent and innervation-independent. Under normal conditions, both in soleus and in extensor digitorum longus muscles, the activity of the enhancer required the integrity of the MEF2-binding site. Cancellation of the binding site of thyroid hormone receptor enhanced its activity, suggesting an inhibitory role. Muscle regeneration of the soleus and extensor digitorum longus muscles caused a marked induction of GLUT4 and stimulation of the enhancer activity, which was independent of innervation. During muscle regeneration, the enhancer activity was markedly inhibited by cancellation of the binding sites of MEF2, MyoD, or thyroid hormone receptors. Different MEF2 isoforms expressed in skeletal muscle (MEF2A, MEF2C, and MEF2D) and all members of the MyoD family had the capacity to participate in the activity of the GLUT4 enhancer as assessed by transient transfection in cultured cells. Our data indicate that the GLUT4 enhancer operates in muscle fibers and its activity contributes to the differences in GLUT4 gene expression between oxidative and glycolytic muscle fibers and to the GLUT4 up-regulation that occurs during muscle regeneration. The activity of the enhancer is maintained in adult muscle by MEF2, whereas during regeneration the operation of the enhancer depends on MEF2, myogenic transcription factors of the MyoD family, and thyroid hormone receptors

    RIPK1 Mediates TNF-Induced Intestinal Crypt Apoptosis During Chronic NF-κB Activation

    Get PDF
    Tumor necrosis factor (TNF) is a major pathogenic effector and a therapeutic target in inflammatory bowel disease (IBD), yet the basis for TNF-induced intestinal epithelial cell (IEC) death is unknown, because TNF does not kill normal IECs. Here, we investigated how chronic nuclear factor (NF)- κB activation, which occurs in human IBD, promotes TNF-dependent IEC death in mice. Human IBD specimens were stained for p65 and cleaved caspase-3. C57BL/6 mice with constitutively active IKKβ in IEC (Ikkβ(EE) IEC ), Ripk1 D138N/D138N knockin mice, and Ripk3 -/- mice were injected with TNF or lipopolysaccharide. Enteroids were also isolated from these mice and challenged with TNF with or without RIPK1 and RIPK3 inhibitors or butylated hydroxyanisole. Ripoptosome-mediated caspase-8 activation was assessed by immunoprecipitation. NF-κB activation in human IBD correlated with appearance of cleaved caspase-3. Congruently, unlike normal mouse IECs that are TNF-resistant, IECs in Ikkβ(EE) IEC mice and enteroids were susceptible to TNF-dependent apoptosis, which depended on the protein kinase function of RIPK1. Constitutively active IKKβ facilitated ripoptosome formation, a RIPK1 signaling complex that mediates caspase-8 activation by TNF. Butylated hydroxyanisole treatment and RIPK1 inhibitors attenuated TNF-induced and ripoptosome-mediated caspase-8 activation and IEC death in vitro and in vivo. Contrary to common expectations, chronic NF-κB activation induced intestinal crypt apoptosis after TNF stimulation, resulting in severe mucosal erosion. RIPK1 kinase inhibitors selectively inhibited TNF destructive properties while preserving its survival and proliferative properties, which do not require RIPK1 kinase activity. RIPK1 kinase inhibition could be a potential treatment for IBD

    The Bace1 product sAPPβ induces ER stress and inflammation and impairs insulin signaling

    Get PDF
    Objective -secretase/-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a key enzyme involved in Alzheimer's disease that has recently been implicated in insulin-independent glucose uptake in myotubes. However, it is presently unknown whether BACE1 and the product of its activity, soluble APPsAPPcontribute to lipid-induced inflammation and insulin resistance in skeletal muscle cells. Materials/Methods Studies were conducted in mouse C2C12 myotubes, skeletal muscle from Bace1-/-mice and mice treated with sAPP and adipose tissue and plasma from obese and type 2 diabetic patients. Results We show that BACE1 inhibition or knockdown attenuates palmitate-induced endoplasmic reticulum (ER) stress, inflammation, and insulin resistance and prevents the reduction in Peroxisome Proliferator- Activated Receptor Co-activator 1 (PGC-1) and fatty acid oxidation caused by palmitate in myotubes. The effects of palmitate on ER stress, inflammation, insulin resistance, PGC-1 down-regulation, and fatty acid oxidation were mimicked by soluble APP in vitro. BACE1 expression was increased in subcutaneous adipose tissue of obese and type 2 diabetic patients and this was accompanied by a decrease in PGC-1 mRNA levels and by an increase in sAPPplasma levels of obese type 2 diabetic patients compared to obese non-diabetic subjects. Acute sAPP administration to mice reduced PGC-1 levels and increased inflammation in skeletal muscle and decreased insulin sensitivity. Conclusions Collectively, these findings indicate that the BACE1 product sAPP is a key determinant in ER stress, inflammation and insulin resistance in skeletal muscle and gluconeogenesis in liver

    Axillary lymph node dissection versus radiotherapy in breast cancer with positive sentinelnodes after neoadjuvant therapy (ADARNAT trial)

    Full text link
    Introduction: Breast cancer surgery currently focuses on de-escalating treatment without compromising patient survival. Axillary radiotherapy (ART) now replaces axillary lymph node dissection (ALND) in patients with limited sentinel lymph node (SLN) involvement during the primary surgery, and this has significantly reduced the incidence of lymphedema without worsening the prognosis. However, patients treated with neoadjuvant systemic treatment (NST) cannot benefit from this option despite the low incidence of residual disease in the armpit in most cases. Data regarding the use of radiotherapy instead of ALND in this population are lacking. This study will assess whether ART is non-inferior to ALND in terms of recurrence and overall survival in patients with positive SLN after NST, including whether it reduces surgery-related adverse effects. Methods and analyses: This multicenter, randomized, open-label, phase 3 trial will enroll 1660 patients with breast cancer and positive SLNs following NST in approximately 50 Spanish centers over 3 years. Patients will be stratified by NST regimen and nodal involvement (isolated tumoral cells or micrometastasis versus macrometastasis) and randomly assigned 1:1 to ART without ALND (study arm) or ALND alone (control arm). Level 3 and supraclavicular radiotherapy will be added in both arms. The primary outcome is the 5-year axillary recurrence determined by clinical and radiological examination. The secondary outcomes include lymphedema or arm dysfunction, quality of life based (EORTC QLQ-C30 and QLQ-BR23 questionnaires), disease-free survival, and overall survival. Discussion: This study aims to provide data to confirm the efficacy and safety of ART over ALND in patients with a positive SLN after NST, together with the impact on morbidity. Ethics and dissemination: The Research Ethics Committee of Bellvitge University Hospital approved this trial (Protocol Record PR148/21, version 3, 1/2/2022) and all patients must provide written informed consent. The involvement of around 50 centers across Spain will facilitate the dissemination of our results

    The BACE1 product sAPPβ induces ER stress and inflammation and impairs insulin signaling

    Get PDF
    Objective β-secretase/β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a key enzyme involved in Alzheimer's disease that has recently been implicated in insulin-independent glucose uptake in myotubes. However, it is presently unknown whether BACE1 and the product of its activity, soluble APPβ (sAPPβ), contribute to lipid-induced inflammation and insulin resistance in skeletal muscle cells. Materials/Methods Studies were conducted in mouse C2C12 myotubes, skeletal muscle from Bace1−/−mice and mice treated with sAPPβ and adipose tissue and plasma from obese and type 2 diabetic patients. Results We show that BACE1 inhibition or knockdown attenuates palmitate-induced endoplasmic reticulum (ER) stress, inflammation, and insulin resistance and prevents the reduction in Peroxisome Proliferator-Activated Receptor γ Co-activator 1α (PGC-1α) and fatty acid oxidation caused by palmitate in myotubes. The effects of palmitate on ER stress, inflammation, insulin resistance, PGC-1α down-regulation, and fatty acid oxidation were mimicked by soluble APPβ in vitro. BACE1 expression was increased in subcutaneous adipose tissue of obese and type 2 diabetic patients and this was accompanied by a decrease in PGC-1α mRNA levels and by an increase in sAPPβ plasma levels of obese type 2 diabetic patients compared to obese non-diabetic subjects. Acute sAPPβ administration to mice reduced PGC-1α levels and increased inflammation in skeletal muscle and decreased insulin sensitivity. Conclusions Collectively, these findings indicate that the BACE1 product sAPPβ is a key determinant in ER stress, inflammation and insulin resistance in skeletal muscle and gluconeogenesis in liver

    An automatic observation-based aerosol typing method for EARLINET

    Get PDF
    We present an automatic aerosol classification method based solely on the European Aerosol Research Lidar Network (EARLINET) intensive optical parameters with the aim of building a network-wide classification tool that could provide near-real-time aerosol typing information. The presented method depends on a supervised learning technique and makes use of the Mahalanobis distance function that relates each unclassified measurement to a predefined aerosol type. As a first step (training phase), a reference dataset is set up consisting of already classified EARLINET data. Using this dataset, we defined 8 aerosol classes: clean continental, polluted continental, dust, mixed dust, polluted dust, mixed marine, smoke, and volcanic ash. The effect of the number of aerosol classes has been explored, as well as the optimal set of intensive parameters to separate different aerosol types. Furthermore, the algorithm is trained with lit-erature particle linear depolarization ratio values. As a second step (testing phase), we apply the method to an already classified EARLINET dataset and analyze the results of the comparison to this classified dataset. The predictive accuracy of the automatic classification varies between 59% (minimum) and 90% (maximum) from 8 to 4 aerosol classes, respectively, when evaluated against pre-classified EARLINET lidar. This indicates the potential use of the automatic classification to all network lidar data. Furthermore, the training of the algorithm with particle linear depolarization values found in the literature further improves the accuracy with values for all the aerosol classes around 80 %. Additionally, the algorithm has proven to be highly versatile as it adapts to changes in the size of the training dataset and the number of aerosol classes and classifying parameters. Finally, the low computational time and demand for resources make the algorithm extremely suitable for the implementation within the single calculus chain (SCC), the EARLINET centralized processing suite
    corecore