132 research outputs found

    Spatiotemporal trends in cetacean strandings and response in the southwestern Indian Ocean : 2000–2020

    Get PDF
    On behalf of SIF, we would like to thank the Seychelles partners (Alphonse Foundation, Desroches Foundation, Island Conservation Society, Farquhar Foundation, Seychelles Islands Foundation, Silhouette Foundation) for providing financial support to acquire and grant use of their data. Collection of data in Reunion was funded by DEAL Reunion and Region-Reunion.The south-western Indian Ocean (SWIO) is a region of global importance for marine mammal biodiversity, but our understanding of most of the species and populations found there is still rudimentary. The Indian Ocean Network for Cetacean Research (IndoCet) was formed in 2014 and is dedicated to the research of all cetacean species across the SWIO. Since 2019, there have been efforts to create a regional network for coordinated response to stranding events as well as training and capacity building in the SWIO region. The present analysis represents a first investigation of stranding data collected by various members and collaborators within the IndoCet network, covering over 14,800km of coastline belonging to nine countries/territories. Between 2000–2020, there were 397 stranding events, representing 1,232 individual animals, 17 genera and 27 species, belonging to six families: four balaenopterids, one balaenid, one physeterid, two kogiids, six ziphiids and 14 delphinids. Seven mass strandings were recorded: two were composed of three to 20 individuals and five composed of > 20 individuals. Spatial analysis of stranding events indicated that local spatio-temporal clusters (excessive number of events in time and geographic space) were present in all countries/territories, except for the Comoros. The only significant cluster was detected on the southwest coast of Mauritius, just west of the village of Souillac. The SWIO region predominantly comprises relatively poor countries/territories, but imminent Ocean Economy developments are prevalent throughout the region. This study highlights the importance of establishing baselines upon which any future potential impact from anthropogenic developments in the region can be measured.Peer reviewe

    First records of two mealybug species in Brazil and new potential pests of papaya and coffee

    Get PDF
    Five mealybug (Hemiptera: Pseudococcidae) plant pest species: Dysmicoccus grassii (Leonardi), Ferrisia malvastra (McDaniel), Ferrisia virgata (Cockerell), Phenacoccus tucumanus Granara de Willink, and Pseudococcus elisae Borchsenius are recorded for the first time in the state of Espírito Santo, Brazil. These are the first records of D. grassii in Brazil, from papaya (Carica papaya, Caricaceae), and from coffee (Coffea canephora, Rubiaceae). Ferrisia malvastra is also newly recorded in Brazil, where it was found on Bidens pilosa (Asteraceae). Ferrisia virgata was collected from an unidentified weed and Phenacoccus tucumanus from Citrus sp. (Rutaceae). Plotococcus capixaba Kondo was found on pitanga (Eugenia cf. pitanga, Myrtaceae) and Pseudococcus elisae on Coffea canephora, which are new host records for these mealybugs

    Anti-cancer effects and mechanism of actions of aspirin analogues in the treatment of glioma cancer

    Get PDF
    INTRODUCTION: In the past 25 years only modest advancements in glioma treatment have been made, with patient prognosis and median survival time following diagnosis only increasing from 3 to 7 months. A substantial body of clinical and preclinical evidence has suggested a role for aspirin in the treatment of cancer with multiple mechanisms of action proposed including COX 2 inhibition, down regulation of EGFR expression, and NF-κB signaling affecting Bcl-2 expression. However, with serious side effects such as stroke and gastrointestinal bleeding, aspirin analogues with improved potency and side effect profiles are being developed. METHOD: Effects on cell viability following 24 hr incubation of four aspirin derivatives (PN508, 517, 526 and 529) were compared to cisplatin, aspirin and di-aspirin in four glioma cell lines (U87 MG, SVG P12, GOS – 3, and 1321N1), using the PrestoBlue assay, establishing IC50 and examining the time course of drug effects. RESULTS: All compounds were found to decrease cell viability in a concentration and time dependant manner. Significantly, the analogue PN517 (IC50 2mM) showed approximately a twofold increase in potency when compared to aspirin (3.7mM) and cisplatin (4.3mM) in U87 cells, with similar increased potency in SVG P12 cells. Other analogues demonstrated similar potency to aspirin and cisplatin. CONCLUSION: These results support the further development and characterization of novel NSAID derivatives for the treatment of glioma

    Mechanosensory interactions drive collective behaviour in Drosophila.

    Get PDF
    Collective behaviour enhances environmental sensing and decision-making in groups of animals. Experimental and theoretical investigations of schooling fish, flocking birds and human crowds have demonstrated that simple interactions between individuals can explain emergent group dynamics. These findings indicate the existence of neural circuits that support distributed behaviours, but the molecular and cellular identities of relevant sensory pathways are unknown. Here we show that Drosophila melanogaster exhibits collective responses to an aversive odour: individual flies weakly avoid the stimulus, but groups show enhanced escape reactions. Using high-resolution behavioural tracking, computational simulations, genetic perturbations, neural silencing and optogenetic activation we demonstrate that this collective odour avoidance arises from cascades of appendage touch interactions between pairs of flies. Inter-fly touch sensing and collective behaviour require the activity of distal leg mechanosensory sensilla neurons and the mechanosensory channel NOMPC. Remarkably, through these inter-fly encounters, wild-type flies can elicit avoidance behaviour in mutant animals that cannot sense the odour--a basic form of communication. Our data highlight the unexpected importance of social context in the sensory responses of a solitary species and open the door to a neural-circuit-level understanding of collective behaviour in animal groups

    Comparative morphology of the forewing base articulationin Sternorrhyncha compared with a representative of Fulgoromorpha (Insecta, Hemiptera)

    Get PDF
    The forewing articulation of single species from each of the four subgroups of Sternorrhyncha (Aleyrodomorpha, Aphidomorpha, Coccomorpha, Psyllomorpha) was examined by optical and scanning electron microscopy. The species were compared with a species of Cixiidae (Fulgoromorpha), as an outgroup of Sternorrhyncha. We present the results of a comparative analysis of the forewing articulation in these five groups, propose a standardized terminology and compare our findings with those previously reported. The wing base of all examined species is composed of the following structures: anterior and posterior notal wing process, first, second, and third axillary sclerites, tegula, and axillary cord. The number of elements included in the wing base and the surrounding area is the greatest in Cacopsylla mali, the most complicated species from Sternorrhyncha. Based on the shape of axillary sclerites and the number of elements forming the wing base environment, Orthezia urticae (Coccomorpha) and Cixius nervosus (Fulgoromorpha) are the most similar. Among Sternorrhyncha, the most similar axillaries are those of Aphis fabae and Orthezia urticae, which is congruent with existing classifications. In this paper we show that the four groups from Sternorrhyncha exhibit their own distinct wing base morphology

    Transcriptome profiling of ontogeny in the acridid grasshopper Chorthippus biguttulus

    Get PDF
    Acridid grasshoppers (Orthoptera:Acrididae) are widely used model organisms for developmental, evolutionary, and neurobiological research. Although there has been recent influx of orthopteran transcriptomic resources, many use pooled ontogenetic stages obscuring information about changes in gene expression during development. Here we developed a de novo transcriptome spanning 7 stages in the life cycle of the acridid grasshopper Chorthippus biguttulus. Samples from different stages encompassing embryonic development through adults were used for transcriptomic profiling, revealing patterns of differential gene expression that highlight processes in the different life stages. These patterns were validated with semi-quantitative RT-PCR. Embryonic development showed a strongly differentiated expression pattern compared to all of the other stages and genes upregulated in this stage were involved in signaling, cellular differentiation, and organ development. Our study is one of the first to examine gene expression during post-embryonic development in a hemimetabolous insect and we found that only the fourth and fifth instars had clusters of genes upregulated during these stages. These genes are involved in various processes ranging from synthesis of biogenic amines to chitin binding. These observations indicate that post-embryonic ontogeny is not a continuous process and that some instars are differentiated. Finally, genes upregulated in the imago were generally involved in aging and immunity. Our study highlights the importance of looking at ontogeny as a whole and indicates promising directions for future research in orthopteran development

    Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen.

    Get PDF
    The genus Bartonella comprises facultative intracellular bacteria with a unique lifestyle. After transmission by blood-sucking arthropods they colonize the erythrocytes of mammalian hosts causing acute and chronic infectious diseases. Although the pathogen-host interaction is well understood, little is known about the evolutionary origin of the infection strategy manifested by Bartonella species. Here we analyzed six genomes of Bartonella apis, a honey bee gut symbiont that to date represents the closest relative of pathogenic Bartonella species. Comparative genomics revealed that B. apis encodes a large set of vertically inherited genes for amino acid and cofactor biosynthesis and nitrogen metabolism. Most pathogenic bartonellae have lost these ancestral functions, but acquired specific virulence factors and expanded a vertically inherited gene family for harvesting cofactors from the blood. However, the deeply rooted pathogen Bartonella tamiae has retained many of the ancestral genome characteristics reflecting an evolutionary intermediate state toward a host-restricted intraerythrocytic lifestyle. Our findings suggest that the ancestor of the pathogen Bartonella was a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream. This study highlights the importance of comparative genomics among pathogens and non-pathogenic relatives to understand disease emergence within an evolutionary-ecological framework

    Chronic Hypoxia Impairs Muscle Function in the Drosophila Model of Duchenne's Muscular Dystrophy (DMD)

    Get PDF
    Duchenne's muscular dystrophy (DMD) is a severe progressive myopathy caused by mutations in the DMD gene leading to a deficiency of the dystrophin protein. Due to ongoing muscle necrosis in respiratory muscles late-stage DMD is associated with respiratory insufficiency and chronic hypoxia (CH). To understand the effects of CH on dystrophin-deficient muscle in vivo, we exposed the Drosophila model for DMD (dmDys) to CH during a 16-day ascent to the summit of Mount Denali/McKinley (6194 meters above sea level). Additionally, dmDys and wild type (WT) flies were also exposed to CH in laboratory simulations of high altitude hypoxia. Expression profiling was performed using Affymetrix GeneChips® and validated using qPCR. Hypoxic dmDys differentially expressed 1281 genes, whereas the hypoxic WT flies differentially expressed 56 genes. Interestingly, a number of genes (e.g. heat shock proteins) were discordantly regulated in response to CH between dmDys and WT. We tested the possibility that the disparate molecular responses of dystrophin-deficient tissues to CH could adversely affect muscle by performing functional assays in vivo. Normoxic and CH WT and dmDys flies were challenged with acute hypoxia and time-to-recover determined as well as subjected to climbing tests. Impaired performance was noted for CH-dmDys compared to normoxic dmDys or WT flies (rank order: Normoxic-WT ≈ CH-WT> Normoxic-dmDys> CH-dmDys). These data suggest that dystrophin-deficiency is associated with a disparate, pathological hypoxic stress response(s) and is more sensitive to hypoxia induced muscle dysfunction in vivo. We hypothesize that targeting/correcting the disparate molecular response(s) to hypoxia may offer a novel therapeutic strategy in DMD
    corecore