1,009 research outputs found

    Analysis and Market Prospects of a Traditional Calabrian Product

    Get PDF
    The strategies for exploiting typical production represents a theme of great interest, above all in the measure in which exploitation brought about via adequate marketing strategies allows these products to shed their anonymity. This paper constitutes a contribution in this direction, since it analyses the potential of a traditional product ('Nduja) using multivariate analysis techniques on a sample of consumers, identified by a specific market research survey. This made it possible to define the main characteristics of the type of consumer of this product and to define suitable market segmentation strategies.Traditional product, Rural development, Marketing strategies, Factor Analysis, Consumer/Household Economics,

    Forced response of shrouded blades with a coupled static/dynamic approach

    Get PDF
    A coupled static-dynamic method is proposed and applied to bladed disks with shrouds, in order to calculate the nonlinear forced response in presence of friction damping in the frequency domain. The novel approach allows to improve the already existing methods, which require a preliminary static analysi

    Motivations and challenges for stream processing in edge computing

    Get PDF
    The 2030 Agenda for Sustainable Development of the United Nations General Assembly defines 17 development goals to be met for a sustainable future. Goals such as Industry, Innovation and Infrastructure and Sustainable Cities and Communities depend on digital systems. As a matter of fact, billions of Euros are invested into digital transformation within the European Union, and many researchers are actively working to push state-of-the-art boundaries for techniques/tools able to extract value and insights from the large amounts of raw data sensed in digital systems. Edge computing aims at supporting such data-to-value transformation. In digital systems that traditionally rely on central data gathering, edge computing proposes to push the analysis towards the devices and data sources, thus leveraging the large cumulative computational power found in modern distributed systems. Some of the ideas promoted in edge computing are not new, though. Continuous and distributed data analysis paradigms such as stream processing have argued about the need for smart distributed analysis for basically 20 years. Starting from this observation, this talk covers a set of standing challenges for smart, distributed, and continuous stream processing in edge computing, with real-world examples and use-cases from smart grids and vehicular networks

    Global and local expansion of magnetic clouds in the inner heliosphere

    Get PDF
    Observations of magnetic clouds (MCs) are consistent with the presence of flux ropes detected in the solar wind (SW) a few days after their expulsion from the Sun as coronal mass ejections (CMEs). Both the \textit{in situ} observations of plasma velocity profiles and the increase of their size with solar distance show that MCs are typically expanding structures. The aim of this work is to derive the expansion properties of MCs in the inner heliosphere from 0.3 to 1 AU.We analyze MCs observed by the two Helios spacecraft using \textit{in situ} magnetic field and velocity measurements. We split the sample in two subsets: those MCs with a velocity profile that is significantly perturbed from the expected linear profile and those that are not. From the slope of the \textit{in situ} measured bulk velocity along the Sun-Earth direction, we compute an expansion speed with respect to the cloud center for each of the analyzed MCs. We analyze how the expansion speed depends on the MC size, the translation velocity, and the heliocentric distance, finding that all MCs in the subset of non-perturbed MCs expand with almost the same non-dimensional expansion rate (ζ\zeta). We find departures from this general rule for ζ\zeta only for perturbed MCs, and we interpret the departures as the consequence of a local and strong SW perturbation by SW fast streams, affecting the MC even inside its interior, in addition to the direct interaction region between the SW and the MC. We also compute the dependence of the mean total SW pressure on the solar distance and we confirm that the decrease of the total SW pressure with distance is the main origin of the observed MC expansion rate. We found that ζ\zeta was 0.91±0.230.91\pm 0.23 for non-perturbed MCs while ζ\zeta was 0.48±0.790.48\pm 0.79 for perturbed MCs, the larger spread in the last ones being due to the influence of the environment conditions on the expansion

    Expansion of magnetic clouds in the outer heliosphere

    Get PDF
    A large amount of magnetized plasma is frequently ejected from the Sun as coronal mass ejections (CMEs). Some of these ejections are detected in the solar wind as magnetic clouds (MCs) that have flux rope signatures. Magnetic clouds are structures that typically expand in the inner heliosphere. We derive the expansion properties of MCs in the outer heliosphere from one to five astronomical units to compare them with those in the inner heliosphere. We analyze MCs observed by the Ulysses spacecraft using insitu magnetic field and plasma measurements. The MC boundaries are defined in the MC frame after defining the MC axis with a minimum variance method applied only to the flux rope structure. As in the inner heliosphere, a large fraction of the velocity profile within MCs is close to a linear function of time. This is indicative of} a self-similar expansion and a MC size that locally follows a power-law of the solar distance with an exponent called zeta. We derive the value of zeta from the insitu velocity data. We analyze separately the non-perturbed MCs (cases showing a linear velocity profile almost for the full event), and perturbed MCs (cases showing a strongly distorted velocity profile). We find that non-perturbed MCs expand with a similar non-dimensional expansion rate (zeta=1.05+-0.34), i.e. slightly faster than at the solar distance and in the inner heliosphere (zeta=0.91+-0.23). The subset of perturbed MCs expands, as in the inner heliosphere, at a significantly lower rate and with a larger dispersion (zeta=0.28+-0.52) as expected from the temporal evolution found in numerical simulations. This local measure of the expansion also agrees with the distribution with distance of MC size,mean magnetic field, and plasma parameters. The MCs interacting with a strong field region, e.g. another MC, have the most variable expansion rate (ranging from compression to over-expansion)

    Recent Advancements in the Hole-Drilling Strain-Gage Method for Determining Residual Stresses

    Get PDF
    The hole-drilling Strain-Gage method is a widely used and cost-effective technique for the evaluation of residual stresses. The test method is standardized by ASTM E837-13a, which defines the scope, measurement range, minimum requirements of instrumentation, test procedure, and algorithms and coefficients for the computation of uniform and non-uniform stress distribution. However, the standardized test method presents some limitations regarding the scope and measurement range; moreover, some typical errors involved in the measurements are not taken into account, i.e., errors due to the hole eccentricity, the local plasticity, the intermediate thickness, and the hole-bottom chamfer, which can affect the results in some cases. Also, the standard does not provide the user with a complete guide regarding the evaluation of the uncertainty connected with this type of measurement. The paper presents a more general approach that allows the correction of some errors and overcomes and some limitations of the ASTM E837-13a test method, contributing to greater accuracy of the test results
    • …
    corecore