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ABSTRACT

Context. Observations of magnetic clouds (MCs) are consistent with the presence of flux ropes detected in the solar wind (SW) a few
days after their expulsion from the Sun as coronal mass ejections (CMEs).
Aims. Both the in situ observations of plasma velocity profiles and the increase of their size with solar distance show that MCs are
typically expanding structures. The aim of this work is to derive the expansion properties of MCs in the inner heliosphere from 0.3 to
1 AU.
Methods. We analyze MCs observed by the two Helios spacecraft using in situ magnetic field and velocity measurements. We split
the sample in two subsets: those MCs with a velocity profile that is significantly perturbed from the expected linear profile and those
that are not. From the slope of the in situ measured bulk velocity along the Sun-Earth direction, we compute an expansion speed with
respect to the cloud center for each of the analyzed MCs.
Results. We analyze how the expansion speed depends on the MC size, the translation velocity, and the heliocentric distance, finding
that all MCs in the subset of non-perturbed MCs expand with almost the same non-dimensional expansion rate (ζ). We find departures
from this general rule for ζ only for perturbed MCs, and we interpret the departures as the consequence of a local and strong SW
perturbation by SW fast streams, affecting the MC even inside its interior, in addition to the direct interaction region between the SW
and the MC. We also compute the dependence of the mean total SW pressure on the solar distance and we confirm that the decrease
of the total SW pressure with distance is the main origin of the observed MC expansion rate. We found that ζ was 0.91 ± 0.23 for
non-perturbed MCs while ζ was 0.48 ± 0.79 for perturbed MCs, the larger spread in the last ones being due to the influence of the
solar wind local environment conditions on the expansion.

Key words. magnetic fields – magnetohydrodynamics (MHD) – Sun: coronal mass ejections (CMEs) – solar wind –
interplanetary medium

1. Introduction

Magnetic clouds (MCs) are magnetized plasma structures form-
ing a particular subset of interplanetary coronal mass ejections
(ICMEs, e.g., Burlaga 1995). MCs are transient structures in the
solar wind (SW) defined by an enhanced magnetic field with re-
spect to that found in the surrounding SW with a coherent rota-
tion of the field of the order of about a day when these structures
are observed at 1 AU (Burlaga et al. 1981). A lower proton tem-
perature than the expected one in the SW with the same velocity
is another signature of MCs that complement their identification
(e.g., Richardson & Cane 1995; Marsch et al. 2009).

MCs interact with their environment during their journey
in the solar wind (SW) from the Sun to the outer heliosphere
and, since the SW pressure (magnetic plus plasma) decreases
for increasing heliocentric distance, an expansion of MCs is
expected. In a heliospheric frame, the in situ observed bulk
plasma velocity typically decreases in magnitude from the front
to the back inside MCs, confirming the expectation that MCs are

expanding objects in the SW. Furthermore, from observations of
large samples of MCs observed at different heliocentric distance,
it has been shown that the size of MCs increases for larger helio-
centric distances (Leitner et al. 2007, and references therein).

These structures have an initial expansion from their origin
in the Sun, as shown from observations of radial expansion at the
corona; e.g., an example of the leading edge of a CME traveling
faster than its core is shown in Fig. 6 of Tripathi et al. (2006).
However their subsequent expansion mainly will be given by
the environmental (SW) conditions as a consequence of force
balance (Démoulin & Dasso 2009).

Dynamical models have been used to describe clouds in
expansion, either considering only a radial expansion (e.g.,
Farrugia et al. 1993; Osherovich et al. 1993; Farrugia et al. 1997;
Nakwacki et al. 2008b), or expansion in both the radial and ax-
ial directions (e.g., Shimazu & Vandas 2002; Berdichevsky et al.
2003; Dasso et al. 2007; Nakwacki et al. 2008a; Démoulin &
Dasso 2009). The main aim of these models is to take into ac-
count the evolution of the magnetic field as the MC crosses the
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spacecraft. Another goal is to correct the effect of mixing spatial-
variation/time-evolution in the one-point observations to obtain
a better determination of the MC field configuration. The expan-
sion of several magnetic clouds has been analyzed previously by
fitting different velocity models to the data (Farrugia et al. 1993;
Shimazu & Vandas 2002; Berdichevsky et al. 2003; Vandas et al.
2005; Yurchyshyn et al. 2006; Dasso et al. 2007; Mandrini et al.
2007; Démoulin et al. 2008).

The expansion of some MCs is not always well marked with
in situ velocity measurements. This is in particular the case for
small MCs or those overtaken by fast streams. Slow magnetic
clouds, with velocities lower than or of the order of 400 km s−1,
in general have small sizes, low magnetic field strengths, and
only a few of them present shocks or sheaths (e.g., Tsurutani
et al. 2004). Fast streams overtaking magnetic clouds from be-
hind can compress the magnetic field in the rear for the over-
taken MC, for instance in some cases forming large structures
called merged interaction regions (e.g., Burlaga et al. 2003). The
interaction between a stream and an MC can affect the internal
structure of the cloud (e.g., as shown from numerical simulations
by Xiong et al. 2007). The difference between the velocities of
the front and back boundaries, called ΔVobs, was frequently used
to qualify how important the expansion of an observed MC is.
A larger ΔVobs is favorable for the presence of shocks surround-
ing the MC, especially for the presence of a backward shock
(Gosling et al. 1994). A large ΔVobs is less important for the
presence of a frontal shock since a frontal shock is also created
by a large difference between the MC global velocity and the
overtaken SW velocity.

The quantity ΔVobs is a good proxy of the time variation of
the global size of the MC, however, ΔVobs does not express how
fast the expansion of an element of fluid is, since ΔVobs depends
strongly on how big the studied MC is. For example the MC
observed by ACE at 1 AU on 29 October 2004 (Mandrini et al.
2007) is formed by a flux rope with a large radius, R ≈ 0.17 AU,
and it also has a large ΔVobs ≈ 400 km s−1, and so, at first sight,
it can be qualified as a very rapidly expanding MC. However, let
suppose that the same MC would have most its flux having been
reconnected with the encountered SW during the transit from the
Sun, as has been observed in some cases (e.g., Dasso et al. 2006,
2007), so that only the flux rope core would have been observed
as a MC. If the remaining flux rope would have a radius of only
10−2 AU, it would have shown ΔVobs ≈ 400/17 ≈ 24 km s−1, so
it would have been qualified as a slowly expanding MC.

More generally, small flux ropes are expected to have in-
trinsically small ΔVobs, an expectation confirmed by the data
(Figs. 3a,b). MCs have a broad range of sizes, with flux rope
radii of a few 0.1 AU down to a few 10−3 AU (Lynch et al. 2003;
Feng et al. 2007), and it is necessary to quantify their expan-
sion rate independently of their size. In this study, we analyze
the expansion of MCs in the inner heliosphere, and find a non-
dimensional expansion coefficient (ζ), which can be quantified
from one-point in situ observations of the bulk velocity time pro-
file of the cloud. We demonstrate that ζ characterizes the expan-
sion rate of the MC, independently of its size.

We first describe the data used, and then the method to define
the main properties of the MC (Sect. 2). In Sect. 3, we analyze
the properties of the MC expansion, defining a proper expansion
coefficient. We derive specific properties of two groups of MCs,
defined from their interaction with the SW environment. Then,
we relate the MC expansion rate to the decrease of the total SW
pressure with solar distance. We summarize our results in Sect. 4
and conclude in Sect. 5.

2. Data and method

2.1. Helios data base

We have studied the MCs reported by different authors from
the Helios 1 and 2 missions (Bothmer & Schwenn 1998; Liu
et al. 2005; Leitner et al. 2007); from November 1974 to 1985
for Helios 1 and from January 1976 to 1980 for Helios 2. We
analyzed observations of plasma properties (Rosenbauer et al.
1977), in particular bulk velocity and density of protons (Marsch
et al. 1982), and magnetic field vector (Neubauer et al. 1977), for
a time series with a temporal cadence of 40 ± 1 s.

The magnetic and velocity fields observations are in a right-
handed system of coordinates (x̂, ŷ, ẑ). x̂ corresponds to the Sun-
Spacecraft direction, ŷ is on the ecliptic plane and points from
East to West (in the same direction as the planetary motion),
and ẑ points to the North (perpendicular to the ecliptic plane and
closing the right-handed system).

2.2. Definition of the MC local frame

To facilitate the understanding of MC properties, we define a
system of coordinates linked to the cloud in which ẑcloud is along
the cloud axis (with Bz,cloud > 0 at the MC axis). Since the ve-
locity of an MC is nearly in the Sun-spacecraft direction and as
its speed is much higher than the spacecraft speed (which can be
supposed to be at rest during the cloud observing time), we as-
sume a rectilinear spacecraft trajectory in the cloud frame. The
trajectory defines a direction d̂ (pointing toward the Sun); then,
we define ŷcloud in the direction ẑcloud × d̂ and x̂cloud completes
the right-handed orthonormal base (x̂cloud, ŷcloud, ẑcloud). We also
define the impact parameter, p, as the minimum distance from
the spacecraft to the cloud axis.

The observed magnetic field in an MC can be expressed in
this local frame, transforming the observed components (Bx, By,
Bz) with a rotation matrix to (Bx,cloud, By,cloud, Bz,cloud). In partic-
ular, for p = 0 and an MC described by a cylindrical magnetic
configuration, i.e. B(r) = Bz(r)ẑ+Bφ(r)φ̂, we have x̂cloud = r̂ and
ŷcloud = φ̂ when the spacecraft leaves the cloud. In this particular
case, the magnetic field data will show: Bx,cloud = 0, a large and
coherent variation of By,cloud (with a change of sign), and an in-
termediate and coherent variation of Bz,cloud, from low values at
one cloud edge, with the largest value at its axis and returning to
low values at the other edge.

More generally, the local system of coordinates is especially
useful when p is small compared to the MC radius (R) since the
direction of the MC axis can be found using a fitting method or
applying the minimum variance (MV) technique to the normal-
ized time series of the observed magnetic field (e.g. Dasso et al.
2006, and references therein). In particular, from the analysis of
a set of cylindrical synthetic MCs, Gulisano et al. (2007) found
that the normalized MV technique provides a deviation of the
real orientation of the main MC axis of less than 10◦ even for p
as large as 50% of the MC radius.

2.3. Definition of the MC boundaries

As the first step of an iterative process, we choose the MC
boundaries reported in the literature, and perform a normal-
ized minimum variance analysis to find the local frame of the
MC. We then analyze the magnetic field components in the lo-
cal frame, and redefine the boundaries of each MC, according
to the expected typical behavior of the axial field (Bz,cloud, hav-
ing its maximum near the center and decreasing toward the MC
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Fig. 1. Examples of two analyzed MCs that are not significantly perturbed by a fast flow. The MC center was observed at 07-Jan.-1975 10:39 and
04-Mar.-1975 21:37 UT, for panels a), c) and b), d), respectively. The vertical dashed lines define the MC boundaries. a), b) Vx is the observed
velocity component in the radial direction from the Sun, expressed in km per second. The straight line is the linear least square fit of the velocity
in the time interval where an almost linear trend is present (where the observations are presented as a solid line). The linear fitting is extrapolated
to the borders of the MC, which are marked with circles. c), d) By is the magnetic field component, in nT, both orthogonal to the MC axis and to
the spacecraft trajectory, while the solid line represents Fy , which is the accumulated flux of By (Eq. (7)). The extremum of Fy (proxy of the cloud
center) is indicated with diamonds (a color version is available in the electronic version).

boundaries), the azimuthal field (By,cloud, maximum at one of the
borders, minimum at the other one and changing its signs near
the cloud center), and Bx,cloud, which is expected to be small and
with small variations (see Gulisano et al. 2007). Moreover, in
the MC frame it is easier to differentiate the SW and MC sheath
magnetic field, which is fluctuating, from the MC field, which
has a coherent and expected behaviour for the three field com-
ponents. We then moved the borders in order to reach these prop-
erties of the local field components, and performed the same pro-
cedure iteratively to find an improved orientation, using several
times the minimum variance technique. We applied this proce-
dure to each MC of our sample.

2.4. Characterization of the MC expansion

Most MCs have a higher velocity in their front than in their back,
showing that they are expanding magnetic structures in the SW.
About half of the studied MCs have well defined linear pro-
file Vx(t) (Figs. 1a,b), while for the other half, Vx(t) is nearly
linear only in a part of the MC which includes the MC center
(Figs. 2a,b). The distortions of Vx(t) are more frequently due to
an overtaking faster SW flow in the back of the MC.

We split the data set in two groups: non-perturbed MCs for
cases where the velocity profile presents a linear trend in more
than 75% of the full size of the MC and perturbed MCs for cases
where this is not satisfied. There are almost as many perturbed
as non-perturbed MCs, considering data from each spacecraft

separately and both of them together. The measured temporal
profile Vx(t) is fitted using a least square fit with a linear function
of time,

Vx,fit(t) = Vo,fit + (dVx/dt)fit t, (1)

where (dVx/dt)fit is the fitted slope of the linear function. We
always keep the fitting range inside the MC, but restrict it to the
most linear part of the observed profile. This choice minimizes
the effect of the interacting flows (but it does not fully remove it,
since a long term interaction can, a priori, change the expansion
rate of the full MC).

The linear fit is used to define the velocities Vx,fit(tin) and
Vx,fit(tout) at the MC boundaries (Sect. 2.3). Then, we define the
full expansion velocity of an MC as:

ΔVx = Vx,fit(tin) − Vx,fit(tout). (2)

For non-perturbed MCs, ΔVx, is very close to the observed ve-
locity difference Vx(tin)−Vx(tout), see e.g. upper panels of Fig. 1.
For perturbed MCs, this procedure minimizes the effects of the
perturbations entering the MC. Then, the expansion velocity is
defined consistently for the full set of MCs.

2.5. MC size

From the determination of the boundaries described above, we
can estimate the size, S , of the flux rope along x̂ (the Sun-
Spacecraft direction). S is computed as the time duration of
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Fig. 2. Examples of two analyzed MCs that are perturbed by a fast flow as seen in the upper panels. The MC center was observed at 30-Jan.-1977
03:18 and 23-Jun.-1980 12:25 UT, for panels a), c) and b), d), respectively. The external perturbations enter in a significant part of the MCs. The
same quantities, as in Fig. 1, are shown (a color version is available in the electronic version).

observation of the MC multiplied by the MC velocity at the cen-
ter of the structure (see end of Sect. 2.7).

We perform a linear least square fit in log-log plots of S as
a function of the distance to the Sun (D). As expected, the size
has a clear dependence with D:

S full set = (0.23 ± 0.01) D0.78±0.12

S non−perturbed = (0.32 ± 0.02) D0.89±0.15 (3)

S perturbed = (0.16 ± 0.01) D0.45±0.16,

where S and D are in AU. Our results are compatible within the
error bars with previous studies:

dBothmer = (0.24 ± 0.01) D0.78±0.10

S Liu = (0.25 ± 0.01) D0.92±0.07 (4)

S Wang = 0.19 D0.61

dLeitner = (0.20 ± 0.02) D0.61±0.09,

where d is an estimation of the true diameter of the MC. Our
results are closer to Bothmer & Schwenn (1998) and Liu et al.
(2005) who analyzed MCs and ICMEs, respectively. The larger
difference is between our results and the last two ones while
they are based on the most different sets, as follows. Wang et al.
(2005) studied a large set of ICMEs defined only by a measured
temperature lower by a factor of 2 than expected in the SW with
the same speed (e.g., Richardson & Cane 2004). This set in-
cluded MCs, but it is dominated by non-MC ICMEs. Conversely,
Leitner et al. (2007) analyzed only MCs, with a strict classi-
cal definition. They fitted the magnetic field observations with
a classical cylindrical linear force-free field, then they found the
impact parameter and the orientation of the MC axis to estimate

the true diameter, d, of the MCs. So the selected events and the
method of Wang et al. and Leitner et al. are noticeably different.
We also note that Leitner et al. (2007) found a larger exponent,
1.14±0.44, when they restrict their data to D ≤ 1 AU. This indi-
cates that the relation is not strictly a power-law and this could be
the main origin of the different results (which are so dependent
on the distribution of events with solar distance in the selected
sets).

2.6. Magnetic field strength

Another important characteristic of MCs is their magnetic field
strength. We define the average field 〈B〉 within each MC and
proceed as above with S . 〈B〉 has an even stronger dependence
upon distance:

〈B〉full set = (10.9 ± 0.4) D−1.85±0.07

〈B〉non−perturbed = (11.4 ± 0.5) D−1.85±0.11 (5)

〈B〉perturbed = (10.4 ± 0.6) D−1.89±0.10,

where the units of 〈B〉 and D are nT and AU respectively. Our
results have a stronger dependence on D than previous results:

〈B〉Liu = (7.4 ± 0.4) D−1.40±0.08

〈B〉Wang = 8.3 D−1.52 (6)

〈B〉Leitner = (19 ± 1.4) D−1.30±0.09.

Again the strongest difference exists between our results and
the ones of Leitner et al. (2007). The origin of this differ-
ence is expected to be the same as for the size. Indeed for
D ≤ 1 AU, Leitner et al. (2007) found a more negative expo-
nent, −1.64 ± 0.4, closer to our results, as ocurred for the size.
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Fig. 3. The panels a)–d) show the correlation analysis between proxies for MC expansion with different physical quantities. The MCs are separated
in two groups: perturbed (empty square symbol) and non-perturbed (filled circle symbol). The straight lines are the result of a least square fit for
perturbed (dashed line), non-perturbed (thin continuous line), and for both set of MCs in the list of events shown in Table 1 (thick continuous line).
ΔVx is defined by Eq. (2), Δt = tout − tin, Vc is the velocity of the MC center (or at the closest approach distance), and D is the distance to the Sun.
The fitted values and the obtained correlation coefficient (r) are included as insets, considering the different groups. More significant correlation is
present for the non-perturbed cases (a color version is available in the electronic version).

The typical expansion speed in MCs is of the order of half
the Alfvén speed (e.g., Klein & Burlaga 1982). In our studied set
of MCs, we have also found that the expansion speed was lower
than the Alfvén speed [not shown]. This is a necessary condition
to expect that the magnetic field evolves globally, adapting its
initial magnetic field during its expansion, because the Alfvén
speed is the velocity of propagation of information through the
magnetic structure.

2.7. MC center and translation velocity

Following Dasso et al. (2006), we define the accumulative flux
per unit length L (along the MC axial direction):

Fy(t1, t2)

L
=

∫ t2

t1

By,cloud(t′) Vx,cloud(t′) dt′. (7)

Here we neglect the evolution of the magnetic field during the
spacecraft crossing period (so also the “aging” effect, see Dasso
et al. 2007). The set of field lines, passing at the position of
the spacecraft at t1, with the hyphotesis of symmetry of trans-
lation along the main axis, defines a magnetic flux surface,
which is wrapped around the flux rope axis. Then, any mag-
netic flux surface will be crossed at least twice by the space-
craft, once at t1 and once at t2 defined by Fy(t1, t2) = 0. Then,

this property of Fy(t1, t2) permits us to associate any out-bound
position, within the flux rope, to its in-bound position belong-
ing to the same magnetic-flux surface. The global extremum of
Fy(t1, t), for t1 having a fixed value, locates the position where
the spacecraft trajectory has the closest approach distance to the
MC axis (MC center). This position can also be found directly
from By,cloud(t), where By,cloud crosses zero. Nevertheless, using
the integral quantity Fy has the advantage of decreasing the fluc-
tuations and of outlining the global extremum, compared to the
local extrema (see lower panels of Figs. 1 and 2).

The velocity at the MC center (Vc) is computed from the
fitted linear regression Eq. (1) evaluated at the time when the
spacecraft reaches the MC center.

3. Expansion rate of MCs

3.1. Correlation involving the expansion velocity

From here on, we classify the MCs belonging to the full set of
events, according to the quality of their velocity and magnetic
observations. If they were too noisy or with a lot of data gaps,
we exclude them from the following study, keeping only those
MCs with relatively good quality (listed in Table 1).
ΔVx, as defined by Eq. (2), characterizes the expansion speed

of the crossed MC. However, as outlined in Sect. 1, ΔVx is
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ζ=+0.011<B>+0.77; r= 0.24 (Non−perturbed)
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ζ 
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Fig. 4. Panels a)–d) show the correlation analysis that tests for the dependence of the non-dimensional expansion factor ζ (Eq. (8)) as a function of
other parameters. Perturbed and non-perturbed MCs are represented as in Fig. 3. S corrected to 1 AU and 〈B〉corrected to 1 AU are normalized to 1 AU using
the size and field strength dependence on the distance, according to the relationship given in Eq. (9) (a color version is available in the electronic
version).

expected to be strongly correlated with the MC size, so that it
does not express directly how fast a given parcel of plasma is
expanding in the MC. We therefore define below, after a few
steps, a better measure of the expansion rate. The size of an MC
is proportional to Δt = tout − tin and to Vc. Figure 3a shows
a clear positive correlation between ΔVx and Δt. Moreover the
least square fit of a straight line for the full set of MCs gives a
fitted curve passing in the vicinity of the origin (within the un-
certainties present on the slope). This affine correlation is then
removed by computing ΔVx/Δt. This quantity also shows, as ex-
pected, a positive correlation with Vc (Fig. 3b), but differently
above, the fitted straight line stays far from the origin, so we
cannot simply remove the correlation by dividing ΔVx/Δt by Vc.
However, its dependence on V2

c brings the fitted straight line
close enough to the origin (within the uncertainties of the fit,
Fig. 3c) so that ΔVx/(ΔtV2

c ) is a meaningful quantity. These cor-
relations are present for both groups of MCs, but they are much
stronger for non-perturbed MCs (Figs. 3b,c). Other correlations
have being attempted with the above methodology. Either there
is no significant correlation, or the fitted curve passes far from
the origin. There is still the exception that ΔVx/(ΔtV2

c ) has an
affine correlation with 1/D for non-perturbed MCs (Fig. 3d).

3.2. Non-dimensional expansion rate

The above empirical correlation analysis suggests that we can
define the non-dimensional expansion rate as the quantity:

ζ =
ΔVx

Δt
D

V2
c
· (8)

The first steps were to remove the MC size dependence, while
the last step could be further justified by the need to have a non-
dimensional coefficient. Finally, it is remarkable that the corre-
lation analysis of the MC data leads to the definition of the same
variable, ζ, as the theoretical analysis of Démoulin & Dasso
(2009).

We next verify that ζ is no longer dependent on Δt, Vc, D or
some combination of them. Figures 4a,b show two examples of
this exploration. Indeed, the non-perturbed MCs show almost no
correlation, while there are still some correlations when the per-
turbed MCs are considered. Figure 4b also shows that even for
slow MCs (see Sect. 1), the non-dimensional expansion rate (ζ)
is not correlated with Vc.

Still, does ζ depend on the properties of the MC considered?
To test this we first need to remove the distance dependence on S
and 〈B〉, found in Sects. 2.5 and 2.6, by defining values at a given
solar distance (here taken at 1 AU). We use:

S corrected to 1 AU = S D−0.8

〈B〉corrected to 1 AU = 〈B〉 D+1.8. (9)

We find that there is no significant correlation between ζ and
S corrected to 1 AU, as well as between ζ and 〈B〉corrected to 1 AU for
the non-perturbed MCs (Figs. 4c,d). Taking other exponents, in
the vicinity (±0.4) of the exponents used in Eq. (9), we also find
very low correlation coefficients, in the ranges [0.08, 0.15] for
S corrected to 1 AU and [0.15, 0.29] for 〈B〉corrected to 1 AU.
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Table 1. List of MC events.

S/C Tc Group ΔVx/(tout − tin) ζ
d-m-y h:m (UT) km s−1 h−1

H1 07-Jan.-1975 10:39 N 11.1 1.0
H1 04-Mar.-1975 21:37 N 8.75 0.63
H1 02-Apr.-1975 09:00 P –6.84 –1.1
H1 05-Jul.-1976 14:20 P 0.15 0.04
H1 30-Jan.-1977 03:18 P 6.13 1.4
H1 31-Jan.-1977 00:26 P 3.68 0.75
H1 20-Mar.-1977 01:13 P 4.28 0.52
H1 09-Jun.-1977 01:22 N 4.26 0.86
H1 09-Jun.-1977 10:33 P 3.71 0.9
H1 28-Aug.-1977 21:36 P 0.92 0.25
H1 26-Sep.-1977 03:45 N 14.8 0.97
H1 01-Dec.-1977 20:15 P –0.6 –0.11
H1 03-Jan.-1978 19:21 N 14.1 0.83
H1 16-Feb.-1978 07:25 N 7.66 1.5
H1 02-Mar.-1978 12:33 N 4.99 0.89
H1 30-Dec.-1978 01:50 N 12.4 1.1
H1 28-Feb.-1979 10:13 N 5.7 0.78
H1 03-Mar.-1979 18:49 N 5.51 0.58
H1 28-May.-1979 23:07 p –4.57 –0.37
H1 01-Nov.-1979 09:09 P 2.62 0.5
H1 22-Mar.-1980 21:25 P 7.78 2.0
H1 10-Jun.-1980 20:31 P –6.27 –0.62
H1 20-Jun.-1980 05:47 P 4.24 0.48
H1 23-Jun.-1980 12:25 P 3.6 0.75
H1 27-Apr.-1981 11:55 N 11.9 1.3
H1 11-May.-1981 23:30 N 21.6 1.0
H1 27-May.-1981 05:43 N 6.83 0.89
H1 19-Jun.-1981 05:05 N 25.5 0.75
H2 06-Jan.-1978 06:50 N 6.97 0.84
H2 30-Jan.-1978 05:02 P 11.7 1.2
H2 07-Feb.-1978 13:45 N 2.42 0.68
H2 17-Feb.-1978 02:32 N 3.23 0.8
H2 24-Apr.-1978 11:54 P 15.4 1.0
H1 all 6.2 ± 7.3 0.66 ± 0.65
H1 P 1.3 ± 4.5 0.39 ± 0.81
H1 N 11.1 ± 6.3 0.94 ± 0.25
H2 all 8.0 ± 5.6 0.90 ± 0.19
H2 P 13.6 ± 2.6 1.09 ± 0.13
H2 N 4.2 ± 2.4 0.77 ± 0.08

Both all 6.5 ± 7. 0.70 ± 0.61
Both P 2.9 ± 6. 0.48 ± 0.79
Both N 10.0 ± 6.4 0.91 ± 0.23

The first column in Table 1 indicates the spacecraft (Helios 1 or Helios
2), Tc in the second column is the time for the observation of the MC
center (or for the minimum approach distance). The MCs are separated
in two groups: perturbed (P) and non-perturbed (N) by a fast SW stream.
ΔVx/(tout − tin) is minus the fitted slope of the temporal velocity pro-
file (see, Eq. (2)) and ζ is the non-dimensional expansion coefficient
(Eq. (8)). ΔVx/(tout − tin) < 0 means observed compression of the MC.
The average values and the standard deviations are given at the bottom.

3.3. Expansion of non-perturbed MCs

Perturbed and non-perturbed MCs have a remarkable different
behavior of ζ as a function of ΔVx (Fig. 5). While for non-
perturbed MCs the correlations have been removed, the per-
turbed ones have ζ well correlated with ΔVx (r = 0.79).

To explain the different behavior of ζ let us take into ac-
count that the dependence of the size on the heliocentric dis-
tance is of the form (as observed from several statistical studies,
Eqs. (3)–(4)):

S = S 0(D/D0)m, (10)

−100 0 100 200 300 400 500
−2

−1

0

1

2

3

4
ζ=5.8 x 10−4ΔV

x
+0.8    ;   r= 0.3   (Non−perturbed)

ζ=7.1 x 10−3ΔV
x
+0.092;   r= 0.79 (Perturbed)

ζ=2.9 x 10−3ΔV
x
+0.34  ;   r= 0.6   (both)

ζ 

ΔV
x
 (km/s)

Fig. 5. Perturbed and non-perturbed MCs have a remarkably different
behavior of ζ when they are plotted as a function of ΔVx. The drawing
convention is the same as in Figs. 3, 4 (a color version is available in
the electronic version).

where S 0 is the reference size at the distance D0. Its physical
origin is the approximate pressure balance between the MC and
the surrounding SW (Démoulin & Dasso 2009, see Sect. 3.5).
This physical driving of the expansion is expected to induce a
smooth expansion so that the size of an individual MC closely
follows Eq. (10). Then, for non-perturbed MCs, we can differen-
tiate Eq. (10) with time to derive the expansion velocity ΔVx:

ΔVx ≈ dS
dt
≈ dS

dD
dD
dt
≈ m

S
D

Vc. (11)

Then, the non-dimensional expanding rate of Eq. (8) is:

ζnon−perturbed =
ΔVx

Δt
D

V2
c
≈ m. (12)

This implies that ζ is independent of the size and the velocity of
the MC as well as its distance from the Sun and its global ex-
pansion rate ΔVx, in agreement with our results (Figs. 4, 5). It
also implies that the velocity measurements across a given MC
permits to estimate the exponent m in Eq. (10). Indeed the val-
ues of m deduced from the statistical study of MC size versus
distance (Eq. (3)) are in agreement with the mean value found
independently with the velocity measurements (Fig. 5, Table 1).

3.4. Expansion of perturbed MCs

For perturbed MCs, the estimation of ζ both from the size evo-
lution with distance and from the measured velocity still gives
consistent estimations (Eq. (3), Table 1). However, the mean
value of ζ is lower (ζ ≈ m ≈ 0.45) than for non-perturbed MCs
(ζ ≈ m ≈ 0.8). More important, ζ has a much larger spread for
perturbed than non-perturbed MCs (by a factor ≈4 larger). Such
a larger dispersion of ζ is expected to be the result of the vari-
able physical parameters (such as ram pressure) of the overtak-
ing streams, and also because the interaction is expected to be in
a different temporal stage for different perturbed MCs (ranging
from the beginning to the end of the interaction period).

The effect of an overtaking stream is simply to compress the
MC (at first thought), so MCs perturbed by this effect are ex-
pected to have a lower ζ than non-perturbed MCs. This is true in
average, but there is a significant fraction (5/16) of perturbed
MCs that are in fact expanding faster than the mean of non-
perturbed MCs. The largest ζ is also obtained for a perturbed
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Fig. 6. Cartoon of a possible evolution of the size of the MC with the
helio-distance, showing the expected global expansion (thick solid line),
an example of a non-perturbed MC (thin solid) and a perturbed MC
(dashed line) (a color version is available in the electronic version).

MC. Moreover, ζ for perturbed MCs still has a good correlation
with ΔVx, opposite to the result obtained for non-perturbed MCs
(Fig. 5). Why do perturbed MCs have these properties?

When an MC is overtaken by a fast SW stream, it is com-
pressed by the ram, plasma and magnetic pressure of the overtak-
ing stream, so its size increases less rapidly with solar distance
(than without interaction). If the interaction is strong enough,
this can indeed stop the natural expansion and create an MC in
compression, as in the 3 cases present in Table 1, where ΔVx < 0.
A sketch of such evolution is given in Fig. 6. However, this inter-
action will not last for a long period of time since the overtaking
stream can overtake the flux rope from both sides. As the total
pressure in the back of the MC decreases, the expansion rate of
the MC increases. Indeed, its expansion rate could be faster than
the typical one for non-perturbed MCs, as follows. The com-
pression has provided an internal pressure that is stronger than
the surrounding SW total pressure. Then, when the extra pres-
sure of the overtaking stream has significantly decreased, the
MC has an over-pressure compared to the surrounding SW, so
it expands faster than usual i. e., an overexpansion, see Gosling
et al. (1995). Indeed, the flux rope is expected to evolve towards
the expected size that it would have achieved without the over-
taken SW flow.

So, depending on which time the MC is observed in the in-
teraction process, a perturbed MC can expand slower or faster
than without interaction (Fig. 6). This explains the dispersion
of ζ found for perturbed MCs, but also the presence of some
MCs with faster expansion than usual.

In the case of perturbed MCs, their sizes still follow Eq. (10)
on average (as shown by Eq. (3)), but it has no meaning to apply
this law locally to a given MC. In particular, we cannot differen-
tiate Eq. (10) with time to get an estimation of the local expan-
sion velocity of a perturbed MC (so we cannot write Eq. (11)).
Rather we can use Eq. (10) only to have an approximate size S
in the expression of ζ:

ζperturbed =
ΔVx

S
D
Vc
≈ ΔVxD0

mD1−m

S 0Vc
· (13)

The dependence of D1−m ≈ D0.5 is relatively weak, but still
present (Fig. 4a). ζ also has a dependence on Vc, but the range
of Vc within the studied perturbed group is very limited to de-
rive a reliable dependence from the observations (Fig. 4b), and,
moreover, there is a dependence on S 0 that we cannot quantify.

It remains that the strongest correlation of ζ is with ΔVx (Fig. 5).
Indeed, for perturbed MCs, ζ strongly reflects their local expan-
sion behavior, so that ζ is strongly correlated to ΔVx.

3.5. Physical origin of MC expansion

The main driver of MC expansion is the rapid decrease of the to-
tal SW pressure with solar distance (Démoulin & Dasso 2009).
Other effects, such as the internal over-pressure, the presence of
a shock, as well as the radial distribution and the amount of twist
within the flux rope have a much weaker influence on the expan-
sion. This result was obtained by solving the MHD equations
for flux ropes having various magnetic field profiles, and with
ideal MHD or fully relaxed states (minimizing magnetic energy
while preserving magnetic helicity). Within the typical SW con-
ditions, they have shown that any force-free flux rope will have
an almost self similar expansion, so a velocity profile almost lin-
ear with time as observed by a spacecraft crossing an MC (e.g.
Figs. 1, 2). They also relate the normalized expansion rate ζ to
the exponent nP of the total SW pressure as a function of the
distance D to the Sun (defined by p ∝ D−nP ) as ζ ≈ nP/4.

Here we further test the above theory with the MCs analyzed
in this paper, by comparing the value obtained for ζ with the
value of nP obtained from previous studies of the SW.

According to Mariani & Neubauer (1990), from fitting a
power law to observations of the field strength in the inner helio-
sphere according to B = B0(D/D0)−nB , a global decay law is ob-
tained with nB = 1.6±0.1 (B0 = 3.8±0.2 nT at D0 = 1 AU) from
Helios 1, and nB = 1.8 ± 0.1 (B0 = 3.3 ± 0.2 nT at D0 = 1 AU)
from Helios 2.

For the proton density (Np = Np,0(D/D0)−nN ) we consider a
density of N0 = 7 ± 4 cm−3 at 1 AU (averaging slow and fast
SW according to Schwenn 2006) and nN = 2 (corresponding
to the 2D expansion for the stationary SW with constant radial
velocity).

According to Schwenn (2006) and Totten et al. (1995), it is
possible to represent a typical dependence of the proton temper-
ature (Tp) upon D as approximately Tp = Tp,0(D/D0)−nTp with
nTp = 1.0 ± 0.1 (Tp,0 = (1.3 ± 1.0) × 105 K at D0 = 1 AU).

For electron temperature (Te = Te,0(D/D0)−nTe ) we follow
Marsch et al. (1989), in particular their results for the ranges
of velocities (300–500) km s−1 to better represent the typical
conditions of the SW. For the velocity range (300–400) km s−1,
Marsch et al. (1989) found Te,0 = (1.3 ± 0.4) × 105 K and
nTe = 0.5 ± 0.1; for the velocity range (400–500) km s−1, Te,0 =

(1.4 ± 0.4) × 105 K and nTe = 0.4 ± 0.1. For electrons we then
consider mean temperature averaged over these two ranges of
SW speeds.

The partial pressures (magnetic, proton, and electron) are
shown in Fig. 7. Neglecting the small effect of the α particles,
the total pressure in the SW (PSW) is: PSW = PB + Pp + Pe.
We then propose that the total pressure also follows a power law
(PSW = P0D−nP ) and fit this power law to PSW(Di). Then, we
fit PSW with a power law (P0D−nP ). The sum of different power
laws is generally not a power law, however in the present case we
still find a total pressure which is very close to a power law since
the magnetic and plasma pressures have similar exponents. This
also implies that the exponent found, nP = 2.91±0.31, has a low
sensitivity to the plasma β and the relative pressure contribution
of the electrons and protons.

Using the result of Démoulin & Dasso (2009) that ζ ≈ nP/4
for force-free flux rope, we found ζ = 0.73 ± 0.08, in full
agreement, within the error bars, with ζ found from velocity
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a function of the solar distance. The solid line shows the least square
straight line fitted to the total pressure as computed from the points
marked with circles. The total pressure in the SW decreases as Psw(D) =
P0D−2.9 (a color version is available in the electronic version).

measurement in non-perturbed MCs (Table 1). This further
demonstrates that MC expansion is mainly driven by the de-
crease of the surrounding SW total pressure with solar distance.
The main departure from this global evolution is due to the pres-
ence of overtaking flows.

4. Summary and discussion of main results

MCs have a specific magnetic configuration, forming flux ropes
which expand in all directions, unlike the almost 2D expansion
of the surrounding SW. But how fast do they expand? Is the ex-
pansion rate specific for each MC or is there a common expan-
sion rate? What is the role of the surrounding SW? Finally, what
is the main driver of such 3D expansion?

In order to answer these questions we have re-analyzed a sig-
nificant set of MCs observed by both Helios spacecrafts. In order
to better define the MC extension, we first analyzed the mag-
netic data, finding the direction of the flux rope axis, and then
we rotated the magnetic data in the MC local frame. This step is
important to separate the axial and ortho-axial field components
since they have very different spatial distributions in a flux rope,
and since we then can use the magnetic flux conservation of the
azimuthal component as a constraint on the boundary positions
(e.g., as done in Dasso et al. 2006; Steed et al. 2008). Then, in
the local MC frame, we can better define the boundaries of the
MC.

The observed velocity profile typically has a linear varia-
tion with time, with a larger velocity in front than in the back
of the MC. This is a clear signature of expansion. On top of
this linear trend, fluctuations of the velocity are relatively weak,
with the most noticeable exception occurring when an overtak-
ing fast stream is observed in the back of the MC. Such fast
flow can enter the MC, removing the linear temporal trend. We
consider these overtaken MCs in a separate group as perturbed
MCs (Fig. 2). We exclude from the analysis the MCs where the
overtaking flow was extending more than half the MC size and
MCs where the data gaps were too large. The remaining MCs
are classified as non-perturbed, even if some of them have weak
perturbations in their velocity profiles. These perturbations are
filtered by considering only the major part of the velocity profile
where the profile is almost linear with time (Fig. 1).

The group of non-perturbed MCs has a broad and typical
range of sizes and magnetic field strengths (≈[0.1, 0.75] AU and
≈[7, 25] nT respectively when rescaled at 1 AU). They also have
a broad range of expansion velocities (≈[80, 500] km s−1). Such
a range of expansion velocity cannot be explained by the range
of observing distances, (D in [0.3, 1] AU), since the expansion
velocity decreases only weakly within this range of D. However,
we found that the expansion velocity is proportional to the MC

size. By further analyzing the correlation between the observed
expansion velocity and other measured quantities, such as the
MC velocity, we empirically defined a non-dimensional expan-
sion coefficient ζ (Eq. (8)). For the non-perturbed MCs, ζ is in-
dependent of all the other characteristics of the MCs (such as
size and field strength). Moreover, this empirical definition of ζ,
obtained by removing the correlation in the data between the
expansion rate and other quantities, finally defines the same ζ
quantity as the one defined from theoretical considerations by
Démoulin et al. (2008). We conclude that ζ characterizes the ex-
pansion rate of non-perturbed MCs.

For the non-perturbed MCs, we found that ζ is confined to
a narrow interval: 0.91 ± 0.23. This is consistent with the result
obtained at 1 AU for a set of 26 MCs observed by Wind and ACE
(Démoulin et al. 2008). Indeed, we found that ζ is independent
of solar distance (within [0.3, 1] AU) in the Helios MCs.

What is the origin of this common expansion rate of MCs?
Démoulin & Dasso (2009) have shown theoretically that the
main origin of MC expansion is the decrease of the total SW
pressure with solar distance D. With a SW pressure decreas-
ing as D−nP , they found that ζ ≈ nP/4 independently of the
magnetic structure of the flux rope forming the MC. In the
present work, we re-analyzed the total SW pressure variation
with D, revising previous studies that also analyzed Helios data
(Mariani & Neubauer 1990; Schwenn 2006; Totten et al. 1995;
Marsch et al. 1989). We found nP = 2.91 ± 0.31, which implies
nP/4 = 0.73 ± 0.08, in agreement with our estimation of ζ from
the measured velocity in MCs. We then confirm that the fast de-
crease of the total SW pressure with solar distance is the main
cause of the MC expansion rate.

For MCs overtaken by a fast SW stream (or by another flux
rope on its back, e.g. Dasso et al. 2009), we minimize its im-
portance in the estimation of the MC expansion rate by consid-
ering only the part of the velocity profile which is nearly lin-
ear with time. Still, the mean computed ζ for perturbed MCs is
significantly lower than the mean value for non-perturbed MCs,
showing that the overtaking flows have a more global effect on
MCs (than the part where the velocity profiles significantly de-
part from the linear temporal behavior). A lower expansion rate
is a natural consequence of the compression induced by the over-
taking flow.

More surprising, some perturbed MCs are found to expand
faster (larger ζ) than non-perturbed MCs. We conclude that such
MC are probably observed after the main interaction phase with
the overtaking flow, so that they expand faster than usual in order
to sustain an approximate pressure balance with the surrounding
SW (Fig. 6). More precisely, as the overtaking flow disappears
from the back of the MC, the MC is expected to tend towards the
size that it would have reached without the interaction with the
fast stream. Since it was compressed, it is expanding faster than
usual to return to its expected size in a normal SW.

5. Conclusions

Our present results confirm and extend our previous work on
the expansion of MCs. The non-dimensional expansion factor ζ
(Eq. (8)) gives a precise measure of the expanding state of a
MC. In particular, it removes the size effect which could give the
false impression that parcels of fluid in large MCs are expanding
faster. The value of ζ in non-significantly perturbed MCs is clus-
tered in a narrow range, independent of their magnetic structure,
but determined by the pressure gradient of the surrounding SW.
The mean value of ζ is also nearly the exponent of the solar

Page 9 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912375&pdf_id=7


A&A 509, A39 (2010)

distance for the MC size (determined from the analysis of MCs
at different solar distances, Sect. 2.5).

However, for perturbed MCs, ζ has a much broader range, a
result linked to its proportionality to the local expansion veloc-
ity. So for perturbed MCs, ζ is a measure of the local expansion
rate and of the importance of the overtaking stream (i.e., a quan-
tification of the influence of the MC/stream interaction on the
expansion of the MC).

Finally for non-perturbed MCs, ζ is independent of the solar
distance in the inner heliosphere. Presently we do not know how
far this result extends to larger distances, even if it is an expected
result as long as the flux ropes still exist. This will be the subject
of a future study.
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