1,137 research outputs found
A comparative study of methods for surface area and three-dimensional shape measurement of coral skeletons
The three-dimensional morphology and surface area of organisms such as reef-building corals is central to their biology. Consequently, being able to detect and measure this aspect of corals is critical to understanding their interactions with the surrounding environment. This study explores six different methods of three-dimensional shape and surface area measurements using the range of morphology associated with the Scleractinian corals: Goniopora tenuidens, Acropora intermedia, and Porites cylindrica. Wax dipping; foil wrapping; multi-station convergent photogrammetry that used the naturally occurring optical texture for conjugate point matching; stereo photogrammetry that used projected light to provide optical texture; a handheld laser scanner that employed two cameras and a structured light source; and X-ray computer tomography (CT) scanning were applied to each coral skeleton to determine the spatial resolution of surface detection as well as the accuracy of surface area estimate of each method. Compared with X-ray CT wax dipping provided the best estimate of the surface area of coral skeletons that had external corallites, regardless of morphological complexity. Foil wrapping consistently showed a large degree of error on all coral morphologies. The photogrammetry and laser-scanning solutions were effective only on corals with simple morphologies. The two techniques that used projected lighting were both subject to skeletal light scattering, caused by both gross morphology and meso-coral architecture and which degraded signal triangulation, but otherwise provided solutions with good spatial resolution. X-ray CT scanning provided the highest resolution surface area estimates, detecting surface features smaller than 1000 mu m(2)
The Nondeterministic Waiting Time Algorithm: A Review
We present briefly the Nondeterministic Waiting Time algorithm. Our technique
for the simulation of biochemical reaction networks has the ability to mimic
the Gillespie Algorithm for some networks and solutions to ordinary
differential equations for other networks, depending on the rules of the
system, the kinetic rates and numbers of molecules. We provide a full
description of the algorithm as well as specifics on its implementation. Some
results for two well-known models are reported. We have used the algorithm to
explore Fas-mediated apoptosis models in cancerous and HIV-1 infected T cells
Biological Pathway Specificity in the CellâDoes Molecular Diversity Matter?
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150499/1/bies201800244_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150499/2/bies201800244.pd
Genome-wide DNA methylation analysis of transient neonatal diabetes type 1 patients with mutations in ZFP57
BackgroundTransient neonatal diabetes mellitus 1 (TNDM1) is a rare imprinting disorder characterized by intrautering growth retardation and diabetes mellitus usually presenting within the first six weeks of life and resolves by the age of 18 months. However, patients have an increased risk of developing diabetes mellitus type 2 later in life. Transient neonatal diabetes mellitus 1 is caused by overexpression of the maternally imprinted genes PLAGL1 and HYMAI on chromosome 6q24. One of the mechanisms leading to overexpression of the locus is hypomethylation of the maternal allele of PLAGL1 and HYMAI. A subset of patients with maternal hypomethylation at PLAGL1 have hypomethylation at additional imprinted loci throughout the genome, including GRB10, ZIM2 (PEG3), MEST (PEG1), KCNQ1OT1 and NESPAS (GNAS-AS1). About half of the TNDM1 patients carry mutations in ZFP57, a transcription factor involved in establishment and maintenance of methylation of imprinted loci. Our objective was to investigate whether additional regions are aberrantly methylated in ZFP57 mutation carriers.MethodsGenome-wide DNA methylation analysis was performed on four individuals with homozygous or compound heterozygous ZFP57 mutations, three relatives with heterozygous ZFP57 mutations and five controls. Methylation status of selected regions showing aberrant methylation in the patients was verified using bisulfite-sequencing.ResultsWe found large variability among the patients concerning the number and identity of the differentially methylated regions, but more than 60 regions were aberrantly methylated in two or more patients and a novel region within PPP1R13L was found to be hypomethylated in all the patients. The hypomethylated regions in common between the patients are enriched for the ZFP57 DNA binding motif.ConclusionsWe have expanded the epimutational spectrum of TNDM1 associated with ZFP57 mutations and found one novel region within PPP1R13L which is hypomethylated in all TNDM1 patients included in this study. Functional studies of the locus might provide further insight into the etiology of the disease.<br/
Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems
Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution
of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the
associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local
management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef
fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions
and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the
1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites
and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure,
diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale
integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales,
with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas
still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance.
This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should
be integrated into existing management frameworks and combined with policies to improve system-wide resilience to
climate variation and change
DNA barcoding reveals the coral âlaboratory-ratâ, Stylophora pistillata encompasses multiple identities
Stylophora pistillata is a widely used coral âlab-ratâ species with highly variable morphology and a broad biogeographic range (Red Sea to western central Pacific). Here we show, by analysing Cytochorme Oxidase I sequences, from 241 samples across this range, that this taxon in fact comprises four deeply divergent clades corresponding to the Pacific-Western Australia, Chagos-Madagascar-South Africa, Gulf of Aden-Zanzibar-Madagascar, and Red Sea-Persian/Arabian Gulf-Kenya. On the basis of the fossil record of Stylophora, these four clades diverged from one another 51.5-29.6â
Mya, i.e., long before the closure of the Tethyan connection between the tropical Indo-West Pacific and Atlantic in the early Miocene (16â24â
Mya) and should be recognised as four distinct species. These findings have implications for comparative ecological and/or physiological studies carried out using Stylophora pistillata as a model species, and highlight the fact that phenotypic plasticity, thought to be common in scleractinian corals, can mask significant genetic variation
Environmental drivers of distribution and reef development of the Mediterranean coral Cladocora caespitosa
Cladocora caespitosa is the only Mediterranean scleractinian similar to tropical reef-building corals. While this species is part of the recent fossil history of the Mediterranean Sea, it is currently considered endangered due to its decline during the last decades. Environmental factors affecting the distribution and persistence of extensive bank reefs of this endemic species across its whole geographic range are poorly understood. In this study, we examined the environmental response of C. caespitosa and its main types of assemblages using ecological niche modeling and ordination analysis. We also predicted other suitable areas for the occurrence of the species and assessed the conservation effectiveness of Mediterranean marine protected areas (MPAs) for this coral. We found that phosphate concentration and wave height were factors affecting both the occurrence of this versatile species and the distribution of its extensive bioconstructions in the Mediterranean Sea. A set of factors (diffuse attenuation coefficient, calcite and nitrate concentrations, mean wave height, sea surface temperature, and shape of the coast) likely act as environmental barriers preventing the species from expansion to the Atlantic Ocean and the Black Sea. Uncertainties in our large-scale statistical results and departures from previous physiological and ecological studies are also discussed under an integrative perspective. This study reveals that Mediterranean MPAs encompass eight of the ten banks and 16 of the 21 beds of C. caespitosa. Preservation of water clarity by avoiding phosphate discharges may improve the protection of this emblematic species.Spanish Ministry of Economy and Competitiveness [CTM2014-57949-R]info:eu-repo/semantics/publishedVersio
Commentary: reconstructing four centuries of temperature-induced coral bleaching on the great barrier reef
Coral reefs are spectacular ecosystems found along tropical coastlines where they provide goods and services to hundreds of millions of people. While under threat from local factors, coral reefs are increasingly susceptible to ocean warming from anthropogenic climate change. One of the signature disturbances is the large-scale, and often deadly, breakdown of the symbiosis between corals and dinoflagellates. This is referred to as mass coral bleaching and often causes mass mortality. The first scientific records of mass bleaching date to the early 1980s (Hoegh-Guldberg et al., 2017).
Kamenos and Hennige (2018, hereafter KH18), however, claim to show that mass coral bleaching is not a recent phenomenon, and has occurred regularly over the past four centuries (1572â2001) on the Great Barrier Reef (GBR), Australia. They support their claim by developing a putative proxy for coral bleaching that uses the suggested relationship between elevated sea surface temperatures (SSTs) and reduced linear extension rates of 44 Porites spp. coral cores from 28 GBR reefs. If their results are correct, then mass coral bleaching events have been a frequent feature for hundreds of years in sharp contrast to the vast majority of scientific evidence.
There are, however, major flaws in the KH18 methodology. Their use of the Extended Reconstructed Sea Surface Temperature (ERSST) dataset (based on ship and buoy observations) for reef temperatures from 1854 to 2001, ignores the increasing unreliability of these data which become sparse, less rigorous, and more interpolated going back in time. To demonstrate how the quality of these data degrades, we plot the average number of SST observations per month that contribute to each 200 x 200 km ERSST pixel (Figure 1A, black line). Note that from 1854 to 1900 the four ERSST pixels used by KH18 averaged only 0.85 observations per month, and 82% of these months had no observations at all. Given the heterogeneous nature of SST at local and regional levels, using such broad-scale data as ERSST, is likely to produce substantial errors at reef scales (Figure 1A, red line prior to 1900)
Understanding signaling cascades in melanoma
Understanding regulatory pathways involved in melanoma development and progression has advanced significantly in recent years. It is now appreciated that melanoma is the result of complex changes in multiple signaling pathways that affect growth control, metabolism, motility and the ability to escape cell death programs. Here we review the major signaling pathways currently known to be deregulated in melanoma with an implication to its development and progression. Among these pathways are Ras, B-Raf, MEK, PTEN, phosphatidylinositol-3 kinase (PI3Ks) and Akt which are constitutively activated in a significant number of melanoma tumors, in most cases due to genomic change. Other pathways discussed in this review include the [Janus kinase/signal transducer and activator of transcription (JAK/STAT), transforming growth factor-beta pathways which are also activated in melanoma, although the underlying mechanism is not yet clear. As a paradigm for remodeled signaling pathways, melanoma also offers a unique opportunity for targeted drug development.Fil: Lopez Bergami, Pablo Roberto. Sanford-burnham Medical Research Institute; Estados Unidos. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de BiologĂa y Medicina Experimental. FundaciĂłn de Instituto de BiologĂa y Medicina Experimental. Instituto de BiologĂa y Medicina Experimental; ArgentinaFil: Fitchmann, B. Sanford-burnham Medical Research Institute; Estados UnidosFil: Ronai, ZeÂŽev. Sanford-burnham Medical Research Institute; Estados Unido
Winners and losers as mangrove, coral and seagrass ecosystems respond to sea-level rise in Solomon Islands
A 2007 earthquake in the western Solomon Islands resulted in a localised subsidence event in which sea level (relative to the previous coastal settings) rose approximately 30-70 cm, providing insight into impacts of future rapid changes to sea level on coastal ecosystems. Here, we show that increasing sea level by 30-70 cm can have contrasting impacts on mangrove, seagrass and coral reef ecosystems. Coral reef habitats were the clear winners with a steady lateral growth from 2006-2014, yielding a 157% increase in areal coverage over seven years. Mangrove ecosystems, on the other hand, suffered the largest impact through a rapid dieback of 35% (130 ha) of mangrove forest in the study area after subsidence. These forests, however, had partially recovered seven years after the earthquake albeit with a different community structure. The shallow seagrass ecosystems demonstrated the most dynamic response to relative shifts in sea level with both losses and gains in areal extent at small scales of 10-100 m. The results of this study emphasize the importance of considering the impacts of sea-level rise within a complex landscape in which winners and losers may vary over time and space
- âŠ