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Winners and losers as mangrove, coral and seagrass ecosystems respond to
sea-level rise in Solomon Islands

Abstract
A 2007 earthquake in the western Solomon Islands resulted in a localised subsidence event in which sea level
(relative to the previous coastal settings) rose approximately 30-70 cm, providing insight into impacts of
future rapid changes to sea level on coastal ecosystems. Here, we show that increasing sea level by 30-70 cm
can have contrasting impacts on mangrove, seagrass and coral reef ecosystems. Coral reef habitats were the
clear winners with a steady lateral growth from 2006-2014, yielding a 157% increase in areal coverage over
seven years. Mangrove ecosystems, on the other hand, suffered the largest impact through a rapid dieback of
35% (130 ha) of mangrove forest in the study area after subsidence. These forests, however, had partially
recovered seven years after the earthquake albeit with a different community structure. The shallow seagrass
ecosystems demonstrated the most dynamic response to relative shifts in sea level with both losses and gains
in areal extent at small scales of 10-100 m. The results of this study emphasize the importance of considering
the impacts of sea-level rise within a complex landscape in which winners and losers may vary over time and
space.
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Abstract
A 2007 earthquake in the western Solomon Islands resulted in a localised subsidence event in which
sea level (relative to the previous coastal settings) rose approximately 30–70 cm, providing insight into
impacts of future rapid changes to sea level on coastal ecosystems. Here, we show that increasing sea
level by 30–70 cm can have contrasting impacts on mangrove, seagrass and coral reef ecosystems.
Coral reef habitats were the clear winners with a steady lateral growth from 2006–2014, yielding a
157% increase in areal coverage over seven years. Mangrove ecosystems, on the other hand, suffered
the largest impact through a rapid dieback of 35% (130 ha) of mangrove forest in the study area after
subsidence. These forests, however, had partially recovered seven years after the earthquake albeit
with a different community structure. The shallow seagrass ecosystems demonstrated the most
dynamic response to relative shifts in sea level with both losses and gains in areal extent at small scales
of 10–100 m. The results of this study emphasize the importance of considering the impacts of
sea-level rise within a complex landscape in which winners and losers may vary over time and space.

Introduction

Predicted increases in global sea level over the 21st
century are anticipated to be a critical issue for human-
ity (Nicholls and Cazenave 2010). Sea-level rise will
directly impact people and infrastructure through
inundation and erosion of the shoreline, and will indi-
rectly impact peopleby influencing the distribution and
abundance of tropical coastal ecosystems, such as coral
reefs, mangroves and seagrass. These ecosystems are
important to the well-being of hundreds of millions
of coastal people through the provision of ecosys-
tem goods and services. Services provided by coastal
tropical ecosystems include habitat for fish, shoreline

stabilisation, building materials, and carbon seques-
tration (Hoegh-Guldberg et al 2014). Developing
predictive understanding of how ecosystems will
respond to deepening water is crucial to guide adapta-
tion initiatives, and forecasts of where ecosystems will
be lost and gained can better inform coastal planning
(Bell et al 2014, Mills et al 2016).

The anticipated impacts of increased sea level on
human populations (Hinkel et al 2014), shorelines
(Albert et al 2016) and ecological communities (Cour-
champ et al 2014) will, in some cases, be severe and
in other cases represent an opportunity for adapta-
tion and gradual movement from areas of highest
risk (Cavanaugh et al 2014, Valle et al 2014). In
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general, the seaward margin of intertidal and shal-
low subtidal ecosystems is expected to contract, and
the landward margin to expand if conditions such
as water clarity, hydrodynamics and substratum are
suitable (Short et al 2016, Stevens and Lacy 2012,
Infantes et al 2009). Mangroves, which are terres-
trial plants occurring in intertidal areas between the
mean and upper tide levels, are expected to experi-
ence dieback on the seaward fringe due to inundation
(Lovelock et al 2015) and/or increased water salinity
(Cohen et al 2016). However, paleoenvironmen-
tal evidence suggests that mangrove response and
resilience to sea-level rise is likely to be non-linear
and influenced by a range of physical and biological
processes and interacting ecological feedback mecha-
nisms (Woodroffe et al 2016). Seagrasses are marine
plants which live in shallow coastal waters and have
high light requirements. Increased water depth causes
the benthic irradiance on the seafloor to decrease,
which will lead to seagrass die-off in deeper water
(Saunders et al 2013).

Coral reefs are comprised of species of coral that
are extending upwards towards the sea surface. In the
Indo-Pacific many reef flats may be intertidal
and exposed at low water, and therefore lack
‘accommodation space’ to grow vertically (van Woesik
et al 2015). Reef flats are therefore expected to bene-
fit from moderate levels of sea-level rise, because the
increased water depth may allow corals to re-establish
and provide space into which they can continue to
extend (Woodroffe and Webster 2014). The typically
clear water on reefs, combined with the shape of reefs
(wide and flat on the top, and steeper in deeper water),
suggests that the benefits of sea-level rise to reefs may
outweigh the overall costs (Perry et al 2015). In theory,
all coastal ecosystems could colonise newly inundated
areas landward, where substratum and coastal devel-
opment permits.

A range of modelling tools have been utilized to
predict both species and habitat level changes in dis-
tribution under various sea-level rise scenarios (Davis
et al 2016, Saunders et al 2014, Lovelock et al 2015,
Saunders et al 2013, Storlazzi et al 2011, Hamylton
et al 2014). Insights into how ecosystems will respond
to sea-level rise can be obtained from modelling, but
real world examples are important for the validation of
theoretical models. Local factors such as bathymetry,
topography, sediment supply, water quality, substrate,
currents and wave exposure can have a significant
influence on the response of ecological systems to ris-
ing seas. As such, local scale (<100 km coastline) case
studies of responses to relative changes in sea level
can provide critical insight into larger ecosystem scale
dynamics over 1000’s km of coastline. Further, there
are interdependencies among coastal marine habitats
(Gillis et al 2014) which affect their response to cli-
mate change (Saunders et al 2014). Therefore, we need
to assess the response of interconnected habitats at
landscape scales.

Few studies have examined the impacts of increases
in relative water depth on modern tropical marine
ecosystems in situ. Impacts due to the increase in rel-
ative water depth have been assessed for coral reef
flats using: (1) climatic variability in water level in
the Andaman sea (Brown et al 2011) (2) engineer-
ing works on a reef flat at Heron Island on the Great
Barrier Reef (Scopélitis et al 2011), and (3) subsidence
caused by a subduction earthquake in Solomon Islands
(Saunders et al 2016). There are no studies that have
assessed modern in situ impacts of water level increase
on seagrass, although a retraction of the shallow edge
of seagrass meadows in Corsica was hypothesised to be
the result of recent sea-level rise (Pergent et al 2015).
Mangroves elicit complex responses to sea-level rise
and shallow sub-surface processes, sediment accretion
rates, coastal development and topography all play a
critical role (Sasmito et al 2016, Krauss et al 2014,
Lovelock et al 2011, Duke et al 2017). Many stud-
ies have used coastal ecosystems to infer water levels
over geologic history (e.g. Grigg et al 2002, Rajendran
et al 2007, Dura et al 2011, Blanchon and Shaw 1995,
Woodroffe and Webster 2014, Harvey et al 1999). This
present study demonstrates the diverse responses of
adjacent seagrass, mangroves and coral ecosystems to
an earthquake with associated sudden increase in rela-
tive sea level.

We tested the theoretical model of tropical coastal
ecosystem response to sea-level rise using field data
and remote sensing imagery from a unique in situ
‘proxy’ of sea-level rise caused by tectonic subsi-
dence. The study was conducted in Roviana Lagoon
(8.27 ◦S, E 157.5 ◦E), Western Province, Solomon
Islands, where a magnitude 8.1 megathrust subduction
earthquake caused 30–70 cm subsidence of the marine
environment in April 2007 (Chen et al 2009, Taylor
et al 2008, Saunders et al 2016). We quantified the
response of coral reef, seagrass and mangrove ecosys-
tems in a shallow lagoon to rapid relative sea-level rise.
The area of each of the three ecosystems was mapped
using remote sensing imagery in 2006, 2009, 2012, and
2014. Field measurements that were used to validate
the satellite image based mapping were obtained in
May 2013 (Saunders et al 2016).

Methods

Study site
The M8.1 megathrust earthquake on April 2 2007
(Taylor et al 2008) resulted in a significant rupturing
that caused the islands of Ranongga in the west to be
uplifted by up to 2 m, and the areas of Roviana and
Vonavona lagoons in the east to subside. Our study
assessed areas of mangrove, seagrass and coral in an
area of Roviana Lagoon that subsided by 30–70 cm
(Saunders et al 2016, Taylor et al 2008). We stud-
ied the largest expanses of mangrove (8 km2), seagrass
(5 km2) and shallow coral (2 km2) within this region
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Figure 1. Map of field sites in Roviana Lagoon, Solomon islands (a) with Mangrove, Seagrass and Coral study areas highlighted (b).
Magntiude of earthquake induced subsidence measured by Taylor et al (2008) and Saunders et al (2016) indicated.

(figure 1). These coastal ecosystems provide critical
ecosystem services for subsistence communities in
Solomon Islands (Albert et al 2015, Warren-Rhodes
et al 2011). Thus changes in these ecosystems under
sea-level rise scenarios can have significant impacts
on these rural communities that depend on them for
survival.

A suitable ‘control’ site where subsidence did not
occur was not available in the same geographic and
ecological region due to the widespread and varied
nature of the subsidence and uplift. Using a con-
trol site from a different region would introduce a
range of confounding ecological, anthropogenic and
oceanographic variables. However, time series satellite
imagery from 2003–2006 of the coral reefs in Roviana
Lagoon provided a ‘temporal’ control, and showed
no changed in coral extent prior to subsidence, and
a pronounced change in coral cover and canopy height
after subsidence (Saunders et al 2016). Suitable satel-
lite imagery from pre-2006 was not available for the
mangrove and seagrass areas.

Mapping
The extent and composition of mangrove, seagrass and
shallow coral areas in Roviana Lagoon were mapped
at four time periods (2006, 2009, 2012, 2014) through
either manual digitization or object-based image anal-
ysis of high spatial resolution, pan-sharpened satellite
imagery. Archived high spatial resolution multispec-
tral satellite imagery (cloud free) from 2006 and
2009 (Quickbird-2), 2012 and 2014 (WorldView-2;
table S1 available at stacks.iop.org/ERL/12/094009/
mmedia) was acquired. All image data were atmospher-
ically corrected to represent reflected sunlight from
the water surface (ENVI 4.8 FLAASH Ⓡ module). The
panchromatic band was used to pan-sharpen the blue,
green and red bands (visible wavelengths), resulting in

colour image data with a 0.64 m (Quickbird-2) or 0.5 m
(WorldView-2) pixel resolution. The 2012 image was
used as the base image, to which all other years were
georeferenced.

Due to the specific characteristics of the individ-
ual habitat types, one of two mapping approaches was
used. For the larger mangrove and seagrass areas,
Object Based Image Analysis (OBIA) was applied,
whereas manual delineation, which is more efficient for
small areas, was used to map the extent of dense hard
coral cover. OBIA is a multistep approach that first
divides the image into objects of like pixels based upon
their shape, colour and/or texture (Blaschke 2010).
Subsequently classes are assigned to the objects using
regional-specific rule sets that further differentiate
objects from each other based on their neighbour-
hood relationship in addition to shape, colour, texture
(Kamal et al 2015, Roelfsema et al 2013). Contex-
tual editing was utilised in instances where automatic
class assignment was deemed incorrect following
visual interpretation of the OBIA classification. Field
ground-truthing was conducted at the coral and sea-
grass sites in May 2013 and in October 2014 for the
mangrove site, a detailed description of coral mapping
methodology is provided in (Saunders et al 2016).

Qualitative validation was based on visual assess-
ment by the authors of the final time series of maps for
each habitat type. No quantitative accuracy assessment
could be conducted as limited field validation data was
available (only available for 2013 for coral and seagrass
habitats, for 2014 for the mangrove area, with no vali-
dation data collected for any habitat, in any of the other
years). From the time series (2006, 2009, 2012, 2014)
of mangrove, seagrass and coral habitat maps, the
expansion/retraction of each habitat was assessed and
difference maps were created using ArcGIS software.
The limited field data, only four different times and
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Figure 3. Dynamics of coral, mangrove and seagrass between 2006 and 2014. Note total extent in 2006- Coral 5.8 ha, Mangrove 380.7
ha, Seagrass 174.3 ha.

reliance on satellite based mapping, limits the interpre-
tation of the results to landscape scale changes rather
than fine scale processes.

Results

Overview
The responseofmangroves, seagrass and corals differed
between ecosystem type according to the conceptual
model that we outlined in the introduction. However,
the trajectories of change differed among ecosystems,
highlighting key differences in the vulnerability and
responsiveness of different ecosystems to environ-
mental changes. There was an initial 30% decline in
mangrove areal extent followed by a steady recovery
to 90% of the pre-disturbance area (figure 2). Seagrass
initially increased in area, followed by a decline to the
pre-disturbance extent and, finally, another increase
(figure 2). Corals showed a steady increase in area
through all time points with a final 257% increase on
pre-disturbance extent (figure 2).

By assessing the changes in each specific 1 m2 grid
over the four satellite images (2006, 2009, 2012, 2014)
we can gain an understanding of how stable or resilient
each ecosystem is (figure 3). Over 80% of the coral
present in 2006 remained alive in all years through to
2014. With only small areas of coral dying, dying and
recovering or expanding and then dying (8%, 7.5%
and 8% respectively). Only 54% of the mangrove that
was present in 2006 persisted through all years to still
be alive in 2014. With 21% of 2006 mangroves dying
and remaining dead through all years and 24% dying
after 2006 but recovering by 2014. The seagrass ecosys-
tem proved to be the most dynamic with 70% staying
alive through all years, 10% dying, 20% dying and then
recovering, 26% expanding and then dying and 46%
expanding and remaining alive in 2014 (figure 3).

Coral
In 2006, the live coral in the Kundukundu area cov-
ered an area of 5.8 ha. Between 2006 and 2009, 4.3 ha
of live coral colonised in areas from which coral was
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Coral

coral site reef crest/flat reef slope shallow/sand land

Coral No Change Coral gain Coral loss

Figure 4. Extent (top) and change (below) of coral between 2006 and 2014.

Seagrass
land cloud dense sparse shallow/sand

Change Maps Legend
No Change Gain Loss

Figure 5. Extent (top) and change (below) of seagrass between 2006 and 2014.

previously absent, while 0.4 ha of coral present in 2006
died, resulting in a total area of live coral of 9.8 ha by
2009. This rate of coral expansion into new areas with
minimal loss of coral continued between 2009–2012
and 2012–2014 to result in 15 ha of live coral occurring
in 2014, representing a 157% increase in coral area from
2006 (figure 4). Further information on the response
of the coral reefs to relative sea-level rise in the region
is available in Saunders et al 2016.

Seagrass
In 2006 174.3 ha of seagrass meadow (Cymodocea
sp., Syringodium isoetifolium, Halophila sp.) extended
across the shallow sandy region studied in Roviana
lagoon. By 2009, the total area of seagrass had increased
to 215.4 ha, driven largely by colonisation of sparse sea-
grass onto areas previously defined as ‘shallow sand’

in 2006. Between 2009 and 2012 the total seagrass
area declined to 187.5 ha driven largely by a transi-
tion of sparse seagrass to shallow sand on areas on the
edge of the meadow. From 2012 to 2014 the seagrass
meadow expanded from 187.5 ha to 257.5 ha, driven by
66.9 ha of previously shallow sand being colonised by
sparse seagrass along the southern edge of the meadow
(figure 5).

Mangroves
There was 381 ha of dense mangrove forests within the
study area in 2006. This forest consisted of a diverse
assemblage of species with Rhizophora stylosa domi-
nating the seaward fringe, Ceriops tagal, Rhizophora
apiculata and Bruguiera gynmorhiza in the mid for-
est and Xylocarpus granatum, Heritiera littoralis and
Lumnitzera littorea in the landward forest. Within 3–6
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(a)

(b)

Mangroves

Mangroves

Change Maps Legend

Change Maps Legend

No Change Gain Loss

No Change Gain Loss

Live Mangrove Dieback Water/non-Mangrove Clouds Land

Live Mangrove Dieback Water/non-Mangrove Clouds Land

Figure 6. (a) Extent (top) and change (below) of mangroves between 2006 and 2014 showing loss after 2007 subsidence and recovery
between 2012 and 2014, (b) zoom of extent (top) and change (below) of mangroves between 2006 and 2014 showing fine scale patterns
in dieback and recovery.

months after the 2007 earthquake, widespread dieback
of the mangroves began to occur and by early 2008 had
become widespread (figure 6(a)). By 2009, as shown
in the conceptual profile diagram (figure 8(b)), 35%
(130 ha) of the mangrove forest had died with the
majority of dieback occurring along the seaward fringe
and mid-intertidal zones. The rate of mangrove forest
loss over this period is orders of magnitude above the
background levels of mangrove forest loss in Solomon
Islands of 0.05% per annum (Hamilton and Casey
2016). By 2012, 38% (50 ha) of the dieback areas
had recovered with new seedling growth (figure 6,

figure 7(b) and figure 8), however a further 24 ha of
mangrove forest had died. By 2014, the rate of new
dieback was negligible with only 3.2 ha of mangroves
lost between 2012–2014 and 51 ha of new regrowth
over this period. By 2014, the live mangrove forest,
including dense regrowth, occupied 339 ha or 89%
of the original 2006 area. The mangroves along the
seaward fringe suffered the most dieback with over
80% loss between 2006 and 2009 (figure 9). By 2014
these fringe forests experienced rapid recovery to 75%
of the 2006 area. However, recovery was not spatially
uniform. Figure 6 shows some large areas of mangrove,
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(a)

(b)

Figure 7. (a) Dieback of mangroves In Lulu Channel, NW of Munda during April 2008 (Photo: Bruno Manele), (b) recovery of
Rhizophora in November 2014 adjacent to dead mature Bruguiera of the mid-intertidal zone.

particularly in the upstream channel, which did not
have observable recovery by 2014. Areas not mapped as
recovered appear to be within the lower mid-intertidal
zone as shown in figure 6(b).

Discussion

The M8.1 earthquake and subsequent relative sea-
level rise of 30–70 cm in Solomon Islands in 2007
induced substantially different responses fromthe three
ecosystems assessed over local areas < 10 km2. Man-
groves were negatively impacted initially followed by
a recovery phase. Seagrass were relatively unaffected
by the relative sea-level rise, and showed a small rela-
tive increase in area through time. Coral communities
appeared to benefit through increased live cover extent.
This is notable, given declines in coral coverage region-
ally (Selig and Bruno 2010) and elsewhere globally
(Gardner et al 2003).

The study siteoffered auniqueopportunity to study
the impacts of rapid relative sea-level rise on three inter-
connected tropical marine ecosystems. Despite the lack
of a suitable control site to compare these responses

to, we offer several lines of evidence to suggest that
responses are related to the change in relative sea level.
Firstly, the magnitude of change in extent for both coral
and mangrove ecosystems are orders of magnitude
above background levels of change observed elsewhere
in the region (Selig and Bruno 2010, Hamilton and
Casey 2016). Secondly, the changes in both coral and
mangrove ecosystems are in agreement with previous
assessments and analysis of past, modern and future
sea-level rise influences on these ecosystems (Saunders
et al 2016, Lovelock et al 2015, Scopélitis et al 2011,
Brown et al 2011). Thirdly, the timing and consistency
in these responses in the three time points assessed after
the subsidence indicate the results are not the outcome
of natural variability or other variables unrelated to the
subsidence event. Fourth, time series satellite imagery
from 2003–2006 of the coral reefs in Roviana Lagoon
showed no change in coral extent prior to subsidence,
in contrast to the pronounced increase in coral cover
and canopy height observed after subsidence (Saunders
et al 2016).

Mangroves have been identified as a particu-
larly vulnerable ecosystem to shifts in sea level due
to their strong dependence along the tidal profile.
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Figure 8. Mangrove zones across the intertidal profile before the Solomon Islands earthquake in 2007 (a), around 6 months afterwards
(b), and 7 years afterwards (c). Note original presence of stilt-rooted Rhizophora species at the Seaward Fringe zone, buttressed
Bruguiera species in the Mid Zone, and buttressed Heritiera and Xylocarpus at the High Zone. Mangrove dieback had occurred
through the tidal zone from Seaward to Mid zones, leaving remnant Rhizophora trees at the seaward edge as well as along the high
intertidal landward fringing zones.
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Paleo-environmental evidence suggests mangroves
may have been able to keep up with sea-level rise rates
up to 8–10 mm yr−1 when sedimentation has been
sufficient (Woodroffe 1990). Furthermore, accumu-
lation of organic matter from biological production
has also been demonstrated to enable mangroves to be
stable in the face of relative sea-level rise (Morris et al
2002). However, depending on; sedimentation rates,

tidal range, salinity and wave exposure, mangroves
have exhibited a large diversity of responses to shifts
in sea level over the past 10 000 years (Woodroffe 1999,
Cohen et al 2016). In particular, biological accretion
from root material has been identified as an impor-
tant process for mangroves to maintain elevation in
the face of sea-level rise (McKee et al 2007). The
rapid rise in relative sea levels in Roviana resulted in
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a dramatic decline in mangroves followed by a rapid
recovery phase with forest cover partially re-established
by 2014. In this, it is useful to consider that mangrove
trees lost were of mixed age classes up to around 200
years old. So, whilst tree maturity may be attained in
a decade (Duke 2001), recovery here is measured in
terms of seedling re-establishment observed after seven
years.

The early recovery of mangrove forests following
the earthquake is encouraging. Field observations indi-
cate the mangrove re-establishment is primarily driven
by colonisation of Rhizophora replacing Bruguiera
within themid intertidal range,which maybe indicative
of up-profile zonal shift. Rhizophora are a fast growing,
well dispersed colonising species and can be expected
to expand in area following disturbances. Landward
migration of wetlands can also occur as a result of sea-
level rise if rates and topography allow (Doyle et al
2010). In this instance minimal landward migration
was observed. Coastal topography and limited impact
to high-intertidal mangroves and adjacent terrestrial
forest is likely to have restricted mangrove landward
migration. The shift in species from Bruguiera to Rhi-
zophora will result in reduced ecosystem services from
this forest as Bruguiera are commonly used as food,
firewood and building materials for subsistence com-
munities in Solomon Islands (Warren-Rhodes et al
2011).

This short-term recovery of Rhizophora will have
an important role in stabilisation of sediments (Love-
lock et al 2015) and preventing sediment loss that
can compound sea-level rise impacts (Hayden and
Granek 2015). The rapid recovery can also maintain
sediment levels through biological accretion, with rates
of accretion in fringe mangroves exceeding that of land-
ward mangroves thus increasing sea-level rise resilience
(McKee et al 2007). In sum, the roles that functional
mangrove ecosystems play can create a series of feed-
back mechanisms that can mitigate the influence of
sea-level rise (Kirwan and Megonigal 2013). Thus,
despite the widespread dieback that initially occurred
in Roviana as a result of the earthquake and associated
sudden change in sea level, the rapid recovery observed
indicates this mangrove ecosystem will likely continue
to function under future sea-level rise scenarios, albeit
with a different distribution of species.

Mangroves are nonlinear, non-equilibrium, and
highly dynamic systems (Schmitt and Duke 2015). The
lackof observable recovery in someareasprovidesprac-
tical evidence that mangrove response to disturbance,
in particular sea level rise, is likely to be non-linear and
influenced by a range of physical and biological pro-
cesses and complex ecological feedback mechanisms
(Woodroffe et al 2016).

Although seagrass occupy a broader extent of the
tidal profile than mangroves, being predominantly
sub-tidal, their distribution is tightly coupled to light
availability (a function of depth and water clarity) (Abal
and Dennison 1996) and also regulated by substrate

and wave exposure (Callaghan et al 2015). Given the
sensitivity of seagrass to changes in water quality, they
are often considered a biological sentinel or ‘coastal
canary’ (Orth et al 2006). Several studies have indi-
cated seagrass habitats would contract under sea-level
rise scenarios due to reduced light penetration (Davis
et al 2016) or coastal squeeze (Mills et al 2016) unless
water quality is improved (Saunders et al 2013). How-
ever, water clarity in our shallow study area is relatively
high and hence seagrass distribution is unlikely to be
light limited. In terms of substrate, the shallow sea-
grass meadows studied occur in soft sediments which
are dynamic in response to water level and hydro-
dynamic changes (Tecchiato et al 2015). Numerical
models have shown that a 0.5–1 m rise in sea level
can result in increased wave-induced stresses, includ-
ing resuspension and erosion of sediments (Storlazzi
et al 2011), capable of negatively impacting ecological
processes (Storlazzi et al 2011) (Saunders et al 2014).
The fast growing nature of tropical seagrass has likely
contributed to the rapid adaptation and colonization
of emergent suitable habitat. Thus, vegetated ecosys-
tems such as mangrove and seagrass are more likely
to rapidly adapt to changes in substrate, sea level and
hydrodynamics than those that are founded on fixed,
hard substrates such as corals.

The positive impact of local sea-level rise on coral
ecosystems observed in this study was related to the
presence of fast growing Acropora corals (Saunders
et al 2016). In some areas where accommodation space
is the limiting factor and healthy areas of fast-growing
species exist, we can expect sea-level rise to provide
some positive outcomes for shallow reefs. However,
it is important to consider other factors when using
these findings to understand future coral community
responses to sea-level rise. First, increases in the avail-
ability of habitat in shallow water environments will
necessarily be accompanied by a loss of habitat in the
deeper limits to coral growth. As well, the expected
warmer and less alkaline oceans will slow coral growth
(Hoegh-Guldberg et al 2007, Albright et al 2016) and
may lead to reefs that are no longer grow fast enough
to keep up with sea-level rise (Dove et al 2013). Fur-
thermore, direct anthropogenic impacts of overfishing,
coastal development and degraded water quality will
likely exceed positive effects from sea-level rise in many
instances.

While assessments of how single species and
ecosystem scale responses to sea-level rise are impor-
tant, consideration is also needed of landscape scale
responses. Landscape scale connectivity between sea-
grass, coral andmangroves is critical to supportfisheries
in Roviana (Olds et al 2013). As the extent and distribu-
tion of these ecosystems changes with sea-level rise and
other climate change related pressures, we can expect
species that rely on connectivity between the ecosys-
tems to also be impacted (Leonard et al 2016, Iwamura
et al 2013). The response of coral reef ecosystems
to sea-level rise will affect the persistence of adjacent
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ecosystems in lagoonal environments due to changes
in the hydrodynamic environment caused by deepen-
ing water (Saunders et al 2014). Improving our ability
to predict these landscape scale changes as a result of
sea-level rise can help guide pre-emptive adaptive con-
servation of these landscapes by including predicted
future habitats in conservation prioritisation processes
(Rogers et al 2015).

This present study has demonstrated that changes
to ecosystems as a result of sea-level rise will be com-
plex and varied. Whilst there are limitations due to
this study assessing a rapid 30–70 cm rise in sea levels
which does not represent the incremental eustatic sea-
level rise expected in the order of 5–10 mm yr−1 over
the coming century (Australian Bureau of Meteorology
and CSIRO 2014, Jevrejeva et al 2012). Regardless of
the rates of rise, this study illustrates the differential
responses of ecosystems, with seagrass being dynamic
in the face of change, corals winning out through lateral
expansion and mangroves initially losing substantial
area prior to recovery to an altered state. Through
more detailed studies of the processes involved in
these varied responses, we can begin to identify the
features that provide ecosystem level resilience to
sea-level rise.
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