22 research outputs found

    Development and characterization of an improved formulation of cholesteryl oleate-loaded cationic solid-lipid nanoparticles as an efficient non-viral gene delivery system

    Get PDF
    Nanoparticle-mediated plasmid delivery is considered a useful tool to introduce foreign DNA into the cells for the purpose of DNA vaccination and/or gene therapy. Cationic solid-lipid nanoparticles (cSLNs) are considered one of the most promising non-viral vectors for nucleic acid delivery. Based on the idea that the optimization of the components is required to improve transfection efficiency, the present study aimed to formulate and characterize cholesteryl oleate-containing solid-lipid nanoparticles (CO-SLNs) incorporating protamine (P) to condense DNA to produce P:DNA:CO-SLN complexes as non-viral vectors for gene delivery with reduced cytotoxicity and high cellular uptake efficiency. For this purpose, CO-SLNs were used to prepare DNA complexes with and without protamine as DNA condenser and nuclear transfer enhancer. The main physicochemical characteristics, binding capabilities, cytotoxicity and cellular uptake of these novel CO-SLNs were analyzed. Positively charged spherical P:DNA:CO-SLN complexes with a particle size ranging from 330.1 ± 14.8 nm to 347.0 ± 18.5 nm were obtained. Positive results were obtained in the DNase I protection assay with a protective effect of the genetic material and 100% loading efficiency was achieved at a P:DNA:CO-SLN ratio of 2:1:7. Transfection studies in human embryonic kidney (HEK293T) cells showed the versatility of adding protamine to efficiently transfect cells, widening the potential applications of CO-SLN-based vectors, since the incorporation of protamine induced almost a 200-fold increase in the transfection capacity of CO-SLNs without toxicity. These results indicate that CO-SLNs with protamine are a safe and effective platform for non-viral nucleic acid delivery.Fil: Limeres, María José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina. Universidad de Barcelona; EspañaFil: Suñé Pou, Marc. Consejo Superior de Investigaciones Científicas; España. Universidad de Barcelona; EspañaFil: Prieto Sanchez, Silvia. Consejo Superior de Investigaciones Científicas; EspañaFil: Moreno Castro, Cristina. Consejo Superior de Investigaciones Científicas; EspañaFil: Nusblat, Alejandro David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Hernandez Munain, Cristina. Consejo Superior de Investigaciones Científicas; EspañaFil: Castro, Guillermo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Suñe, Carlos. Consejo Superior de Investigaciones Científicas; EspañaFil: Suñé nNegre, Josep M.. Universidad de Barcelona; EspañaFil: Cuestas, María Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentin

    Development and characterization of an improved formulation of cholesteryl oleate-loaded cationic solid-lipid nanoparticles as an efficient non-viral gene delivery system

    Get PDF
    Nanoparticle-mediated plasmid delivery is considered a useful tool to introduce foreign DNA into the cells for the purpose of DNA vaccination and/or gene therapy. Cationic solid-lipid nanoparticles (cSLNs) are considered one of the most promising non-viral vectors for nucleic acid delivery. Based on the idea that the optimization of the components is required to improve transfection efficiency, the present study aimed to formulate and characterize cholesteryl oleate-containing solid-lipid nanoparticles (CO-SLNs) incorporating protamine (P) to condense DNA to produce P:DNA:CO-SLN complexes as non-viral vectors for gene delivery with reduced cytotoxicity and high cellular uptake efficiency. For this purpose, CO-SLNs were used to prepare DNA complexes with and without protamine as DNA condenser and nuclear transfer enhancer. The main physicochemical characteristics, binding capabilities, cytotoxicity and cellular uptake of these novel CO-SLNs were analyzed. Positively charged spherical P:DNA:CO-SLN complexes with a particle size ranging from 330.1 ± 14.8 nm to 347.0 ± 18.5 nm were obtained. Positive results were obtained in the DNase I protection assay with a protective effect of the genetic material and 100% loading efficiency was achieved at a P:DNA:CO-SLN ratio of 2:1:7. Transfection studies in human embryonic kidney (HEK293T) cells showed the versatility of adding protamine to efficiently transfect cells, widening the potential applications of CO-SLN-based vectors, since the incorporation of protamine induced almost a 200-fold increase in the transfection capacity of CO-SLNs without toxicity. These results indicate that CO-SLNs with protamine are a safe and effective platform for non-viral nucleic acid delivery.Centro de Investigación y Desarrollo en Fermentaciones Industriale

    The COVID-19 Sentinel Schools Network of Catalonia (CSSNC) project : Associated factors to prevalence and incidence of SARS-CoV-2 infection in educational settings during the 2020-2021 academic year

    Get PDF
    The Sentinel Schools project was designed to monitor and evaluate the epidemiology of COVID-19 in Catalonia, gathering evidence for health and education policies to inform the development of health protocols and public health interventions to control of SARS-CoV-2 infection in schools. The aim of this study was to estimate the prevalence and incidence of SARS-CoV-2 infections and to identify their determinants among students and staff during February to June in the academic year 2020-2021. We performed two complementary studies, a cross-sectional and a longitudinal component, using a questionnaire to collect nominal data and testing for SARS-CoV-2 detection. We describe the results and perform a univariate and multivariate analysis. The initial crude seroprevalence was 14.8% (95% CI: 13.1-16.5) and 22% (95% CI: 18.3-25.8) for students and staff respectively, and the active infection prevalence was 0.7% (95% CI: 0.3-1) and 1.1% (95% CI: 0.1-2). The overall incidence for persons at risk was 2.73 per 100 person-month and 2.89 and 2.34 per 100 person-month for students and staff, respectively. Socioeconomic, self-reported knowledge, risk perceptions and contact pattern variables were positively associated with the outcome while sanitary measure compliance was negatively associated, the same significance trend was observed in multivariate analysis. In the longitudinal component, epidemiological close contact with SARS-CoV-2 infection was a risk factor for SARS-CoV-2 infection while the highest socioeconomic status level was protective as was compliance with sanitary measures. The small number of active cases detected in these schools suggests a low transmission among children in school and the efficacy of public health measures implemented, at least in the epidemiological scenario of the study period. The major contribution of this study was to provide results and evidence that help analyze the transmission dynamic of SARS-CoV-2 and evaluate the associations between sanitary protocols implemented, and measures to avoid SARS-CoV-2 spread in schools

    Heterogeneous Infectivity and Pathogenesis of SARS-CoV-2 Variants Beta, Delta and Omicron in Transgenic K18-hACE2 and Wildtype Mice

    Get PDF
    Altres ajuts: Fundació La Marató de TV3 202126-30-21The emerging SARS-CoV-2 variants of concern (VOCs) may display enhanced transmissibility, more severity and/or immune evasion; however, the pathogenesis of these new VOCs in experimental SARS-CoV-2 models or the potential infection of other animal species is not completely understood. Here we infected K18-hACE2 transgenic mice with B.1, B.1.351/Beta, B.1.617.2/Delta and BA.1.1/Omicron isolates and demonstrated heterogeneous infectivity and pathogenesis. B.1.351/Beta variant was the most pathogenic, while BA.1.1/Omicron led to lower viral RNA in the absence of major visible clinical signs. In parallel, we infected wildtype (WT) mice and confirmed that, contrary to B.1 and B.1.617.2/Delta, B.1.351/Beta and BA.1.1/Omicron can infect them. Infection in WT mice coursed without major clinical signs and viral RNA was transient and undetectable in the lungs by day 7 post-infection. In silico modeling supported these findings by predicting B.1.351/Beta receptor binding domain (RBD) mutations result in an increased affinity for both human and murine ACE2 receptors, while BA.1/Omicron RBD mutations only show increased affinity for murine ACE2

    Development of a Novel Anti-CD19 Chimeric Antigen Receptor : A Paradigm for an Affordable CAR T Cell Production at Academic Institutions

    Get PDF
    Genetically modifying autologous T cells to express an anti-CD19 chimeric antigen receptor (CAR) has shown impressive response rates for the treatment of CD19+ B cell malignancies in several clinical trials (CTs). Making this treatment available to our patients prompted us to develop a novel CART19 based on our own anti-CD19 antibody (A3B1), followed by CD8 hinge and transmembrane region, 4-1BB- and CD3z-signaling domains. We show that A3B1 CAR T cells are highly cytotoxic and specific against CD19+ cells in vitro, inducing secretion of pro-inflammatory cytokines and CAR T cell proliferation. In vivo, A3B1 CAR T cells are able to fully control disease progression in an NOD.Cg-Prkdc Il2rd/SzJ (NSG) xenograph B-ALL mouse model. Based on the pre-clinical data, we conclude that our CART19 is clearly functional against CD19+ cells, to a level similar to other CAR19s currently being used in the clinic. Concurrently, we describe the implementation of our CAR T cell production system, using lentiviral vector and CliniMACS Prodigy, within a medium-sized academic institution. The results of the validation phase show our system is robust and reproducible, while maintaining a low cost that is affordable for academic institutions. Our model can serve as a paradigm for similar institutions, and it may help to make CAR T cell treatment available to all patients

    Development of a novel anti-CD19 chimeric antigen receptor: A paradigm for an affordable CAR T cell production at academic institutions

    Get PDF
    Genetically modifying autologous T cells to express an anti-CD19 chimeric antigen receptor (CAR) has shown impressive response rates for the treatment of CD19+ B cell malignancies in several clinical trials (CTs). Making this treatment available to our patients prompted us to develop a novel CART19 based on our own anti-CD19 antibody (A3B1), followed by CD8 hinge and transmembrane region, 4-1BB- and CD3z-signaling domains. We show that A3B1 CAR T cells are highly cytotoxic and specific against CD19+ cells in vitro, inducing secretion of pro-inflammatory cytokines and CAR T cell proliferation. In vivo, A3B1 CAR T cells are able to fully control disease progression in an NOD.Cg-Prkdcscid Il2rdtm1Wjl/SzJ (NSG) xenograph B-ALL mouse model. Based on the pre-clinical data, we conclude that our CART19 is clearly functional against CD19+ cells, to a level similar to other CAR19s currently being used in the clinic. Concurrently, we describe the implementation of our CAR T cell production system, using lentiviral vector and CliniMACS Prodigy, within a medium-sized academic institution. The results of the validation phase show our system is robust and reproducible, while maintaining a low cost that is affordable for academic institutions. Our model can serve as a paradigm for similar institutions, and it may help to make CAR T cell treatment available to all patients

    Cyclophilin B Interacts with Sodium-Potassium ATPase and Is Required for Pump Activity in Proximal Tubule Cells of the Kidney

    Get PDF
    Cyclophilins (Cyps), the intracellular receptors for Cyclosporine A (CsA), are responsible for peptidyl-prolyl cis-trans isomerisation and for chaperoning several membrane proteins. Those functions are inhibited upon CsA binding. Albeit its great benefits as immunosuppressant, the use of CsA has been limited by undesirable nephrotoxic effects, including sodium retention, hypertension, hyperkalemia, interstial fibrosis and progressive renal failure in transplant recipients. In this report, we focused on the identification of novel CypB-interacting proteins to understand the role of CypB in kidney function and, in turn, to gain further insight into the molecular mechanisms of CsA-induced toxicity. By means of yeast two-hybrid screens with human kidney cDNA, we discovered a novel interaction between CypB and the membrane Na/K-ATPase β1 subunit protein (Na/K-β1) that was confirmed by pull-down, co-immunoprecipitation and confocal microscopy, in proximal tubule-derived HK-2 cells. The Na/K-ATPase pump, a key plasma membrane transporter, is responsible for maintenance of electrical Na+ and K+ gradients across the membrane. We showed that CypB silencing produced similar effects on Na/K-ATPase activity than CsA treatment in HK-2 cells. It was also observed an enrichment of both alpha and beta subunits in the ER, what suggested a possible failure on the maturation and routing of the pump from this compartment towards the plasma membrane. These data indicate that CypB through its interaction with Na/K-β1 might regulate maturation and trafficking of the pump through the secretory pathway, offering new insights into the relationship between cyclophilins and the nephrotoxic effects of CsA

    Identificación de proteínas que interaccionan con CypA, CypB y FKBP12 y su implicación en la toxicidad renal producida por los inmunosupresores CsA y FK506

    Get PDF
    La Ciclosporina A (CsA) es un fármaco inmunosupresor que ha supuesto una revolución en el trasplante de órganos. A pesar de sus propiedades anti-inflamatorias, su uso se ha visto limitado por los efectos tóxicos que causa en algunos pacientes. La CsA inhibe la trascripción de genes involucrados en el sistema inmune. Se cree que esta inhibición es la causante de los efectos tóxicos producidos por el fármaco. El modo de acción de CsA está mediado por la unión de sus principales receptores intracelulares, las ciclofilinas (Cyps). Las ciclofilinas son proteínas que están conservadas en todas las especies y su principal función está involucrada en el plegamiento correcto de otras proteínas. Se ha descrito que los efectos tóxicos producidos por CsA podían estar mediados directamente por sus receptores las ciclofilinas. A pesar de que se descrito que las ciclofilinas están involucradas en diferentes funciones, no se les atribuye una función específica. En nuestro laboratorio hemos estado interesados en las posibles vías que involucran a las Cyps y si éstas tienen relación con lo efectos causados por CsA. En esta tesis se ha intentado identificar proteínas que interaccionan con CypA, CypB y FKBP12 y su implicación en los efectos tóxicos producidos por CsA. Hemos identificado una serie de interacciones y hemos estudiado más a fondo dos de ellas. Estas interacciones son las ocurridas entre la ciclofilina B y la subunidad beta de la bomba sodio/potasio, la ciclofilina A y la subunidad beta de la bomba sodio/potasio y por último la ciclofilina B y la subunidad b1 de la ATP sintetasa mitocondrial. Una vez identificadas estas interacciones hemos realizado ensayos funcionales con cada una de ellas. Por un lado hemos estudiado si la actividad de la bomba sodio/potasio estaba afectada en células renales humanas tratadas con CsA y células que habían sido silenciadas para la ciclofilina B y ciclofilina A. Por otro lado hemos realizado un estudio de la actividad y expresión de los complejos de la cadena respiratoria mitocondrial en células renales tratadas con CsA y células renales que habían sido silenciadas para los genes CypA y CypB. A parte de las interacciones encontradas, hemos visto que la actividad de la bomba Na/K está disminuida por el fármaco y que en esta disminución estaría involucrada la ciclofilina B, también hemos visto que los complejos de la cadena respiratoria mitocondrial estarían afectados en células tratadas con CsA y en células interferidas tanto para CypB como para CypA. Como conclusión podríamos sugerir que las ciclofilinas estarían involucradas en los efectos nefrotóxicos que produce la CsA. Estos efectos nefrotóxicos causados por el tratamiento con CsA podrían estar mediados por vias alternativas a la clásicamente descrita, como es la inhibición de la calcineurina. Dichas vías estarían integradas por nuevos efectores tales como Na/K-ATPasa, ATP sintetasa, así como otras putativas dianas que en el futuro serán estudiadas en nuestro laboratorio.Cyclosporine A is an immunosuppressive drug that has revolutionized organ transplantation. Even though it has anti-inflammatory property, its used has been reduced due to the renal toxic effects caused in some patients. CsA inhibits transcription of genes involved in the immune system. The CsA mode of action involves the binding of its main receptors, the cyclophilins (Cyps). Cyps are proteins conserved in all species and their main function is the correct folding of immature proteins. It has been describes that the main toxic effects caused by CsA could be mediated directly by its receptors, the cyclophilins. Although Cyps are involved in many processes, there is not a specific function for them. In our lab, we have identified a number of proteins that interact with Cyclophilin A (CypA), Cyclophilin B (CypB) and FK-Binding Protein 12 (FKBP12) by yeast two hybrid assays. Some of those novel interactions were confirmed by pull-down and co-immunoprecipitation assays. Finally, we have also carried out functional assays in some of those interactions. As a conclusion, we could suggest that cyclophilins would be involved in the nephrotoxic effects caused by cyclosporine A. Those effects are mediated by alternative pathways. Those pathways would be integrated by novel effectors such as the sodium/potassium ATPase, mitochondrial ATP synthase and also other proteins that will be studied in our lab.</I

    Many-particle Hamiltonian for open systems with full Coulomb interaction: Application to classical and quantum time-dependent simulations of nanoscale electron devices

    No full text
    Premi a l'excel·lència investigadora. Àmbit de les Ciències Tecnològiques i Enginyeries. 2010A many-particle Hamiltonian for a set of particles with Coulomb interaction inside an open system is described without any perturbative or mean-field approximation. The boundary conditions of the Hamiltonian on the borders of the open system [in the real three-dimensional (3D) space representation] are discussed in detail to include the Coulomb interaction between particles inside and outside of the open system. The many-particle Hamiltonian provides the same electrostatic description obtained from the image-charge method, but it has the fundamental advantage that it can be directly implemented into realistic (classical or quantum) electron device simulators via a 3D Poisson solver. Classically, the solution of this many-particle Hamiltonian is obtained via a coupled system of Newton-type equations with a different electric field for each particle. The quantum-mechanical solution of this many-particle Hamiltonian is achieved using the quantum (Bohm) trajectory algorithm [X. Oriols, Phys. Rev. Lett. 98, 066803 (2007)]. The computational viability of the many-particle algorithms to build powerful nanoscale device simulators is explicitly demonstrated for a (classical) double-gate field-effect transistor and a (quantum) resonant tunneling diode. The numerical results are compared with those computed from time-dependent mean-field algorithms showing important quantitative differences

    Natural Killer Cells: Angels and Devils for Immunotherapy

    Get PDF
    In recent years, the relevance of the immune system to fight cancer has led to the development of immunotherapy, including the adoptive cell transfer of immune cells, such as natural killer (NK) cells and chimeric antigen receptors (CAR)-modified T cells. The discovery of donor NK cells' anti-tumor activity in acute myeloid leukemia patients receiving allogeneic stem cell transplantation (allo-SCT) was the trigger to conduct many clinical trials infusing NK cells. Surprisingly, many of these studies did not obtain optimal results, suggesting that many different NK cell parameters combined with the best clinical protocol need to be optimized. Various parameters including the high array of activating receptors that NK cells have, the source of NK cells selected to treat patients, different cytotoxic mechanisms that NK cells activate depending on the target cell and tumor cell survival mechanisms need to be considered before choosing the best immunotherapeutic strategy using NK cells. In this review, we will discuss these parameters to help improve current strategies using NK cells in cancer therapy. Moreover, the chimeric antigen receptor (CAR) modification, which has revolutionized the concept of immunotherapy, will be discussed in the context of NK cells. Lastly, the dark side of NK cells and their involvement in inflammation will also be discussed
    corecore