12 research outputs found

    Caractérisation fonctionnelle de glycérolipases de type "patatine" induites lors de la réaction d'hypersensibilité chez le tabac (Recherche de leur implication dans la biosynthÚse d'oxylipines)

    No full text
    La libĂ©ration d'acides gras Ă  partir des lipides membranaires est Ă  l'origine de la synthĂšse d'une variĂ©tĂ© de signaux et composants antimicrobiens impliquĂ©s dans les rĂ©ponses de dĂ©fense chez les plantes. Des travaux antĂ©rieurs au laboratoire ont conduit Ă  l'isolement de trois cDNAs de feuille de tabac (NtPAT1, NtPAT2 et NtPAT3) similaires au gĂšne codant la patatine, une protĂ©ine majeure du tubercule de pomme de terre qui possĂšde une activitĂ© lipide acyle hydrolase (LAH) faible. Ces gĂšnes sont rapidement induits lors de la rĂ©action hypersensible (HR) au virus de la mosaĂŻque du tabac (VMT), cette induction prĂ©cĂ©dant l'accumulation de jasmonates. Une Ă©tude dĂ©taillĂ©e de la rĂ©gulation des gĂšnes NtPAT a montrĂ© qu'ils sont Ă©galement induits par la bactĂ©rie E. carotovora et le champignon B. cinerea. Le traitement de feuilles par la b-mĂ©gaspermine, un Ă©liciteur de mort cellulaire, induit fortement les gĂšnes NtPAT dans la zone infiltrĂ©e avant l'apparition de la nĂ©crose puis, plus tardivement, dans la zone pĂ©riphĂ©rique. Dans les tissus infiltrĂ©s, l'expression de ces gĂšnes est Ă©galement associĂ©e Ă  la production de jasmonates. Par ailleurs, les gĂšnes NtPAT sont corĂ©gulĂ©s avec des gĂšnes codant des enzymes du mĂ©tabolisme des oxylipines comme la 9-LOX, l'a-DOX, la DES et des hydroxylases d'acides gras de type P450s. Ceci suggĂšre l'implication des protĂ©ines NtPAT dans la libĂ©ration d'acides gras permettant d'alimenter diffĂ©rentes branches du mĂ©tabolisme des oxylipines. Pour chaque inducteur, l'expression des gĂšnes NtPAT a lieu avec un profil parallĂšle Ă  l'apparition d'une activitĂ© phospholipase A2 Dans les feuilles traitĂ©es Ă  la b-mĂ©gaspermine, elle est Ă©galement corrĂ©lĂ©e Ă  la dĂ©gradation de phospholipides, de galactolipides et est concomitante Ă  l'accumulation d'acides gras libres. Notre hypothĂšse est que ces activitĂ©s sont dues principalement aux protĂ©ines NtPAT. En effet, la production des protĂ©ines recombinantes NtPAT1 et NtPAT3 chez E. coli a permis de montrer que ces enzymes possĂ©daient une trĂšs forte activitĂ© LAH. Tout d'abord dĂ©crites comme des PLA2, elles sont en fait capables de dĂ©acyler les positions sn-1 et sn-2 de phospholipides comme de galactolipides. Elles sont par contre inactives sur les triglycĂ©rides. Bien que fortement actives sur les galactolipides, des donnĂ©es prĂ©liminaires, obtenues par immunolocalisation et expression de fusions Ă  la GFP, suggĂšrent que les enzymes NtPAT sont cytoplasmiques. Au vu de la corrĂ©lation stricte entre l'apparition des protĂ©ines NtPAT et la dĂ©gradation massive de galactolipides pendant la HR, une hypothĂšse est que ces protĂ©ines sont capables d'hydrolyser l'enveloppe externe des chloroplastes Ă  partir du cytoplasme. Cette hypothĂšse devra ĂȘtre validĂ©e par l'Ă©tude du profil mĂ©tabolique de plantes incapables de produire les protĂ©ines NtPAT. De telles plantes sont actuellement en cours d'Ă©tude. Des plantes transgĂ©niques exprimant constitutivement NtPAT3 ont Ă©galement Ă©tĂ© obtenues. Celles-ci prĂ©sentent une rĂ©sistance accrue au VMT, ce qui conforte l'hypothĂšse d'un rĂŽle des protĂ©ines NtPAT dans la rĂ©sistance aux agents pathogĂšnes.The release of fatty acids from membrane lipids is at the origin of the biosynthesis of an array of signals and antimicrobial derivatives in plant defense. The enzymes catalyzing this hydrolytic step are poorly characterized. Previous work done in our laboratory has led to the isolation of three tobacco genes (NtPAT1, NtPAT2 and NtPAT3) related to the patatin, a major protein from the potato tuber that displays weak lipolytic activity. These genes are rapidly induced during the hypersensitive response (HR) to tobacco mosaic virus, in advance to jasmonate accumulation. A detailed study of the regulation of NtPAT genes showed that these genes are also induced after infection by the bacterium E. carotovora and the fungi B. cinerea. The treatment with b-megaspermin, a cell death-inducing protein elicitor also induced NtPAT genes which are then rapidly expressed in the infiltrated zone before the appearance of necrosis and in the surrounding area with some delay. In the infiltrated tissue, NtPAT gene expression is associated with the accumulation of the two jasmonates, OPDA and JA. In elicitor treated leaves, NtPAT gene are corregulated with several genes encoding proteins involved in oxylipin metabolism such as 9-LOX, a-DOX, DES and some P450s fatty acid hydroxylases. This suggests that NtPAT proteins are involved in providing fatty acids for different oxylipins biosynthetic pathways. In each challenge, NtPAT gene expression also appears with a profile parallel to the appearance of PLA2 activity. In b-megaspermin treated leaves it is also correlated with the degradation of phospholipids and galactolipids, and the accumulation of free fatty acids. We hypothesised that NtPAT proteins are mostly responsible for these activities. Indeed, recombinant expression in E. coli showed that NtPAT1 and NtPAT3 encode proteins with huge lipolytic activity. First described as PLA2, NtPAT proteins are in fact able to cleave both sn-1 and sn-2 positions of phospholipids and galactolipids, but are completely inactive on storage triglycerides. Although they are strongly active on galactolipids, the preliminary results we obtained on the sub-cellular localization of NtPAT, using both immunolocalization and GFP fusion proteins, suggest that these proteins are cytosolic. As galactolipids are only present in the chloroplasts and NtPAT proteins are expressed while the massive galactolipid consumption occurs during the HR, one hypothesis is that these proteins are able to hydrolyze the chloroplastic outer membrane starting from the cytosol. Fatty acids released in this case could supply the chloroplastic 13-LOX pathway but may also supply the cytoplasmic 9-LOX pathway as can do fatty acids released from other membranes. This hypothesis will only be validated by metabolic profiling of transgenic plants depleted in NtPAT proteins. Such plants are currently being studied. Transgenic plants overexpressing NtPAT3 have also been obtained. These plants display increased resistance to tobacco mosaic virus reinforcing the involvement of NtPAT proteins in resistance against pathogens.STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF

    Des dĂ©rivĂ©s d’acides gras dans la rĂ©sistance des plantes aux attaques microbiennes : Ă  la recherche d’acyle hydrolases impliquĂ©es dans la synthĂšse des oxylipines

    No full text
    Les plantes sont soumises constamment Ă  des agressions multiples, provenant d’attaques par une grande variĂ©tĂ© de virus, bactĂ©ries, champignons, nĂ©matodes, ou encore d’herbivores. Face Ă  cette pression, et devant l’impossibilitĂ© de fuir ces conditions hostiles, les plantes ont dĂ©veloppĂ© des systĂšmes de dĂ©tection sophistiquĂ©s leur permettant d’opposer le plus souvent un Ă©tat de rĂ©sistance. L’agriculture a, de tous temps, cherchĂ© Ă  associer aux qualitĂ©s agronomiques des plantes cultivĂ©es les propriĂ©tĂ©s de rĂ©sistance aux maladies de leurs parents sauvages. Les recherches actuelles visent une meilleure comprĂ©hension des mĂ©canismes de dĂ©fense naturels des plantes pour dĂ©velopper de nouvelles mĂ©thodes de lutte. Quand l’agresseur surmonte les barriĂšres prĂ©existantes Ă  l’attaque, certaines plantes mettent en place, aprĂšs une Ă©tape critique de reconnaissance, une cascade d’évĂ©nements cellulaires complexes aboutissant Ă  la rĂ©sistance, et connue sous le nom de rĂ©action d’hypersensibilitĂ©, ou RH (figure 1). La RH est caractĂ©risĂ©e par la mort programmĂ©e des premiĂšres cellules infectĂ©es puis par l’induction d’altĂ©rations mĂ©taboliques intenses dans les tissus entourant les lĂ©sions nĂ©crotiques [1]. Ces rĂ©ponses de dĂ©fense comprennent notamment : - un renforcement des parois vĂ©gĂ©tales par le dĂ©pĂŽt de polysaccharides, de composĂ©s phĂ©noliques insolubles et de protĂ©ines; - la stimulation de voies mĂ©taboliques secondaires, certaines conduisant Ă  la synthĂšse de composĂ©s antimicrobiens appelĂ©s phytoalexines; - la synthĂšse d’un large spectre de protĂ©ines de dĂ©fense attaquant directement les structures du microorganisme, en gĂ©nĂ©ral leurs parois ou membranes cellulaires. Cette superposition de rĂ©ponses de la plante rĂ©sulte gĂ©nĂ©ralement en un confinement de l’agent pathogĂšne inducteur au niveau du site d’attaque [2]. Cette rĂ©sistance locale est Ă©galement accompagnĂ©e d’un phĂ©nomĂšne appelĂ© « rĂ©sistance systĂ©mique acquise » (SAR) et procurant une protection durable, et Ă  large spectre, Ă  l’ensemble de la plante envers une infection secondaire. La perception spĂ©cifique par la plante d’un agresseur de type biotique (c’est-Ă -dire se nourrissant sur des cellules vĂ©gĂ©tales vivantes) nĂ©cessite la prĂ©sence simultanĂ©e d’un gĂšne d’avirulence chez le parasite et celle d’un gĂšne de rĂ©sistance chez la plante (figure 1). En cas d’absence de l’un ou l’autre de ces gĂšnes, la reconnaissance nĂ©cessaire Ă  la RH n’a pas lieu, et la maladie se dĂ©veloppe. D’autres types de microbes sont qualifiĂ©s de nĂ©crotrophes, car leur stratĂ©gie de colonisation implique la secrĂ©tion de toxines et d’enzymes de macĂ©ration qui tuent les cellules vĂ©gĂ©tales et dĂ©gradent leurs structures avant de s’en nourrir. La reconnaissance de l’agresseur par l’hĂŽte dĂ©clenche une sĂ©rie de processus cellulaires rapides incluant notamment des flux d’ions, des phosphorylations, et la production de formes activĂ©es de l’oxygĂšne. Ces rĂ©ponses ne seront pas dĂ©crites ici (revue in [3, 4]). La sĂ©quence prĂ©cise des rĂ©actions dĂ©clenchant la mort cellulaire restemystĂ©rieuse, comme l’est la relation de cette mort avec la production de signaux secondaires de dĂ©fense

    Des dĂ©rivĂ©s d’acides gras dans la rĂ©sistance des plantes aux attaques microbiennes : Ă  la recherche d’acyle hydrolases impliquĂ©es dans la synthĂšse des oxylipines

    No full text
    Les plantes sont soumises constamment Ă  des agressions multiples, provenant d’attaques par une grande variĂ©tĂ© de virus, bactĂ©ries, champignons, nĂ©matodes, ou encore d’herbivores. Face Ă  cette pression, et devant l’impossibilitĂ© de fuir ces conditions hostiles, les plantes ont dĂ©veloppĂ© des systĂšmes de dĂ©tection sophistiquĂ©s leur permettant d’opposer le plus souvent un Ă©tat de rĂ©sistance. L’agriculture a, de tous temps, cherchĂ© Ă  associer aux qualitĂ©s agronomiques des plantes cultivĂ©es les propriĂ©tĂ©s de rĂ©sistance aux maladies de leurs parents sauvages. Les recherches actuelles visent une meilleure comprĂ©hension des mĂ©canismes de dĂ©fense naturels des plantes pour dĂ©velopper de nouvelles mĂ©thodes de lutte. Quand l’agresseur surmonte les barriĂšres prĂ©existantes Ă  l’attaque, certaines plantes mettent en place, aprĂšs une Ă©tape critique de reconnaissance, une cascade d’évĂ©nements cellulaires complexes aboutissant Ă  la rĂ©sistance, et connue sous le nom de rĂ©action d’hypersensibilitĂ©, ou RH (figure 1). La RH est caractĂ©risĂ©e par la mort programmĂ©e des premiĂšres cellules infectĂ©es puis par l’induction d’altĂ©rations mĂ©taboliques intenses dans les tissus entourant les lĂ©sions nĂ©crotiques [1]. Ces rĂ©ponses de dĂ©fense comprennent notamment : - un renforcement des parois vĂ©gĂ©tales par le dĂ©pĂŽt de polysaccharides, de composĂ©s phĂ©noliques insolubles et de protĂ©ines; - la stimulation de voies mĂ©taboliques secondaires, certaines conduisant Ă  la synthĂšse de composĂ©s antimicrobiens appelĂ©s phytoalexines; - la synthĂšse d’un large spectre de protĂ©ines de dĂ©fense attaquant directement les structures du microorganisme, en gĂ©nĂ©ral leurs parois ou membranes cellulaires. Cette superposition de rĂ©ponses de la plante rĂ©sulte gĂ©nĂ©ralement en un confinement de l’agent pathogĂšne inducteur au niveau du site d’attaque [2]. Cette rĂ©sistance locale est Ă©galement accompagnĂ©e d’un phĂ©nomĂšne appelĂ© « rĂ©sistance systĂ©mique acquise » (SAR) et procurant une protection durable, et Ă  large spectre, Ă  l’ensemble de la plante envers une infection secondaire. La perception spĂ©cifique par la plante d’un agresseur de type biotique (c’est-Ă -dire se nourrissant sur des cellules vĂ©gĂ©tales vivantes) nĂ©cessite la prĂ©sence simultanĂ©e d’un gĂšne d’avirulence chez le parasite et celle d’un gĂšne de rĂ©sistance chez la plante (figure 1). En cas d’absence de l’un ou l’autre de ces gĂšnes, la reconnaissance nĂ©cessaire Ă  la RH n’a pas lieu, et la maladie se dĂ©veloppe. D’autres types de microbes sont qualifiĂ©s de nĂ©crotrophes, car leur stratĂ©gie de colonisation implique la secrĂ©tion de toxines et d’enzymes de macĂ©ration qui tuent les cellules vĂ©gĂ©tales et dĂ©gradent leurs structures avant de s’en nourrir. La reconnaissance de l’agresseur par l’hĂŽte dĂ©clenche une sĂ©rie de processus cellulaires rapides incluant notamment des flux d’ions, des phosphorylations, et la production de formes activĂ©es de l’oxygĂšne. Ces rĂ©ponses ne seront pas dĂ©crites ici (revue in [3, 4]). La sĂ©quence prĂ©cise des rĂ©actions dĂ©clenchant la mort cellulaire restemystĂ©rieuse, comme l’est la relation de cette mort avec la production de signaux secondaires de dĂ©fense

    Dimerization of the Vacuolar Receptors AtRMR1 and -2 from Arabidopsis thaliana Contributes to Their Localization in the trans-Golgi Network

    Get PDF
    In Arabidopsis thaliana, different types of vacuolar receptors were discovered. The AtVSR (Vacuolar Sorting Receptor) receptors are well known to be involved in the traffic to lytic vacuole (LV), while few evidences demonstrate the involvement of the receptors from AtRMR family (Receptor Membrane RING-H2) in the traffic to the protein storage vacuole (PSV). In this study we focused on the localization of two members of AtRMR family, AtRMR1 and -2, and on the possible interaction between these two receptors in the plant secretory pathway. Our experiments with agroinfiltrated Nicotiana benthamiana leaves demonstrated that AtRMR1 was localized in the endoplasmic reticulum (ER), while AtRMR2 was targeted to the trans-Golgi network (TGN) due to the presence of a cytosolic 23-amino acid sequence linker. The fusion of this linker to an equivalent position in AtRMR1 targeted this receptor to the TGN, instead of the ER. By using a Bimolecular Fluorescent Complementation (BiFC) technique and experiments of co-localization, we demonstrated that AtRMR2 can make homodimers, and can also interact with AtRMR1 forming heterodimers that locate to the TGN. Such interaction studies strongly suggest that the transmembrane domain and the few amino acids surrounding it, including the sequence linker, are essential for dimerization. These results suggest a new model of AtRMR trafficking and dimerization in the plant secretory pathway

    Chloroplast Biogenesis Controlled by DELLA-TOC159 Interaction in Early Plant Development

    No full text
    Chloroplast biogenesis, visible as greening, is the key to photoautotrophic growth in plants. At the organelle level, it requires the development of non-photosynthetic, color-less proplastids to photosynthetically active, green chloroplasts at early stages of plant development, i.e., in germinating seeds. This depends on the import of thousands of different preproteins into the developing organelle by the chloroplast protein import machinery [1]. The preprotein import receptor TOC159 is essential in the process, its mutation blocking chloroplast biogenesis and resulting in albino plants [2]. The molecular mechanisms controlling the onset of chloroplast biogenesis during germination are largely unknown. Germination depends on the plant hormone gibberellic acid (GA) and is repressed by DELLA when GA concentrations are low [3, 4]. Here, we show that DELLA negatively regulates TOC159 protein abundance under low GA. The direct DELLA-TOC159 interaction promotes TOC159 degradation by the ubiquitin/proteasome system (UPS). Moreover, the accumulation of photosynthesis-associated proteins destined for the chloroplast is downregulated posttranscriptionally. Analysis of a model import substrate indicates that it is targeted for removal by the UPS prior to import. Thus, under low GA, the UPS represses chloroplast biogenesis by a dual mechanism comprising the DELLA-dependent destruction of the import receptor TOC159, as well as that of its protein cargo. In conclusion, our data provide a molecular framework for the GA hormonal control of proplastid to chloroplast transition during early plant development

    Conductivity via Thermally Induced Gap-States in a Polyoxometalate Thin Layer

    No full text
    International audienceWe report a study of alpha-[P2W18O62]6-, Wells-Dawson polyoxometalate layers deposited on ITO coated glass substrates. A variety of techniques has been used including atomic force microscopy for surface topography characterization, current mapping and current-voltage characteristics, X-ray photoemission spectroscopy for chemical analysis, UV-visible photoemission spectroscopy for determination of band line-ups and energy dispersive X-ray reflectivity for determination of layer thicknesses and scattering length densities. The conditions of film deposition and subsequent thermal annealing strongly affect the film characteristics. In particular, we show that nanostriped films a few tens of nm thick can be obtained in a reproducible manner and that such structuring is accompanied by the appearance of gap-states and by a switch from an insulating to a conductive state. Current-voltage characteristics demonstrate that highly ordered films of K 6 [P 2 W 18 O 62 ] allow electron flow only from ITO to [P2W18O62]6-, thus showing a rectifying effect. Finally, we integrate the POM layer 2 into an organic photovoltaic device and show the conduction through it thanks to favorable band alignment between ITO, the gap states and the active photovoltaic layers

    Rare and unique adaptations to cancer in domesticated species : an untapped resource?

    Get PDF
    Strong and ongoing artificial selection in domestic animals has resulted in amazing phenotypic responses that benefit humans, but often at a cost to an animal's health, and problems related to inbreeding depression, including a higher incidence of cancer. Despite high rates of cancer in domesticated species, little attention has been devoted to exploring the hypothesis that persistent artificial selection may also favour the evolution of compensatory anticancer defences. Indeed, there is evidence for effective anti-cancer defences found in several domesticated species associated with different cancer types. We also suggest that artificial selection can favour the “domestication” of inherited oncogenic mutations in rare instances, retaining those associated to late and/or less aggressive cancers, and that by studying these seemingly rare anticancer adaptations, novel cancer treatments may be found

    Rare and unique adaptations to cancer in domesticated species: An untapped resource?

    No full text
    Strong and ongoing artificial selection in domestic animals has resulted in amazing phenotypic responses that benefit humans, but often at a cost to an animal's health, and problems related to inbreeding depression, including a higher incidence of cancer. Despite high rates of cancer in domesticated species, little attention has been devoted to exploring the hypothesis that persistent artificial selection may also favour the evolution of compensatory anticancer defences. Indeed, there is evidence for effective anti-cancer defences found in several domesticated species associated with different cancer types. We also suggest that artificial selection can favour the "domestication" of inherited oncogenic mutations in rare instances, retaining those associated to late and/or less aggressive cancers, and that by studying these seemingly rare anticancer adaptations, novel cancer treatments may be found
    corecore