81 research outputs found

    Effect of HIV-1-related protein expression on cardiac and skeletal muscles from transgenic rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human immunodeficiency virus type 1 (HIV-1) infection and the consequent acquired immunodeficiency syndrome (AIDS) has protean manifestations, including muscle wasting and cardiomyopathy, which contribute to its high morbidity. The pathogenesis of these myopathies remains partially understood, and may include nutritional deficiencies, biochemical abnormalities, inflammation, and other mechanisms due to viral infection and replication. Growing evidence has suggested that HIV-1-related proteins expressed by the host in response to viral infection, including Tat and gp120, may also be involved in the pathophysiology of AIDS, particularly in cells or tissues that are not directly infected with HIV-1. To explore the potentially independent effects of HIV-1-related proteins on heart and skeletal muscles, we used a transgenic rat model that expresses several HIV-1-related proteins (e.g., Tat, gp120, and Nef). Outcome measures included basic heart and skeletal muscle morphology, glutathione metabolism and oxidative stress, and gene expressions of atrogin-1, muscle ring finger protein-1 (MuRF-1) and Transforming Growth Factor-β<sub>1 </sub>(TGFβ<sub>1</sub>), three factors associated with muscle catabolism.</p> <p>Results</p> <p>Consistent with HIV-1 associated myopathies in humans, HIV-1 transgenic rats had increased relative heart masses, decreased relative masses of soleus, plantaris and gastrocnemius muscles, and decreased total and myosin heavy chain type-specific plantaris muscle fiber areas. In both tissues, the levels of cystine (Cyss), the oxidized form of the anti-oxidant cysteine (Cys), and Cyss:Cys ratios were significantly elevated, and cardiac tissue from HIV-1 transgenic rats had altered glutathione metabolism, all reflective of significant oxidative stress. In HIV-1 transgenic rat hearts, MuRF-1 gene expression was increased. Further, HIV-1-related protein expression also increased atrogin-1 (~14- and ~3-fold) and TGFβ<sub>1 </sub>(~5-fold and ~3-fold) in heart and plantaris muscle tissues, respectively.</p> <p>Conclusion</p> <p>We provide compelling experimental evidence that HIV-1-related proteins can lead to significant cardiac and skeletal muscle complications independently of viral infection or replication. Our data support the concept that HIV-1-related proteins are not merely disease markers, but rather have significant biological activity that may lead to increased oxidative stress, the stimulation of redox-sensitive pathways, and altered muscle morphologies. If correct, this pathophysiological scheme suggests that the use of dietary thiol supplements could reduce skeletal and cardiac muscle dysfunction in HIV-1-infected individuals.</p

    Aging promotes pro-fibrotic matrix production and increases fibrocyte recruitment during acute lung injury.

    Get PDF
    Fibrotic lung diseases increase with age. Previously we determined that senescence increases tissue expression of fibronectin EDA (Fn-EDA) and decreases fibroblast expression of Thy-1, and that fibrocytes contribute to fibrosis following bleomycin-induced lung injury in mice. In this study we hypothesized that fibroblasts lacking Thy-1 expression produce an extracellular matrix that promotes fibrocyte retention and myofibroblast transdifferentiation, thereby promoting fibrogenesis. Young and old mice were treated with bleomycin intratracheally; fibrocytes in the bone marrow, blood, and lungs were quantified, and lung fibroblast Thy-1 expression assessed. Bone marrow-derived fibrocytes were cultured on matrices derived from Thy-1(+) or Thy-1(-) fibroblasts ± the pro-fibrotic cytokine TGFβ1. Older mice had more fibrocytes in their bone marrows at baseline and more fibrocytes in their lungs following bleomycin treatment. In parallel, lung fibroblasts in older mice had lower expression of Thy-1 at baseline that increased transiently 7 days after bleomycin treatment but then rapidly waned such that 14 days after bleomycin treatment Thy-1 expression was again markedly lower. Fibrocytes cultured on matrices derived from Thy-1(-) fibroblasts + TGFβ1 had increased gene expression for collagen type 1, fibronectin, Fn-EDA, and α-smooth muscle actin. In parallel, whereas the matrices derived from Thy-1(-) fibroblasts stimulated phosphorylation of Akt in cultured fibrocytes, the matrices derived from Thy-1(+) fibroblasts induced apoptosis. These findings suggest that senescence increases fibrocyte recruitment to the lung following injury and that loss of Thy-1 expression by lung fibroblasts promotes fibrocyte retention and myofibroblast trans-differentiation that renders the "aging lung" susceptible to fibrosis

    HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-infected individuals are at increased risk for acute and chronic airway disease even though there is no evidence that the virus can infect the lung epithelium. Although HIV-related proteins including gp120 and Tat can directly cause oxidant stress and cellular dysfunction, their effects in the lung are unknown. The goal of this study was to determine the effects of HIV-1 transgene expression in rats on alveolar epithelial barrier function. Alveolar epithelial barrier function was assessed by determining lung liquid clearance <it>in vivo </it>and alveolar epithelial monolayer permeability <it>in vitro</it>. Oxidant stress in the alveolar space was determined by measuring the glutathione redox couple by high performance liquid chromatography, and the expression and membrane localization of key tight junction proteins were assessed. Finally, the direct effects of the HIV-related proteins gp120 and Tat on alveolar epithelial barrier formation and tight junction protein expression were determined.</p> <p>Results</p> <p>HIV-1 transgene expression caused oxidant stress within the alveolar space and impaired epithelial barrier function even though there was no evidence of overt inflammation within the airways. The expression and membrane localization of the tight junction proteins zonula occludens-1 and occludin were decreased in alveolar epithelial cells from HIV-1 transgenic rats. Further, treating alveolar epithelial monolayers from wild type rats <it>in vitro </it>with recombinant gp120 or Tat for 24 hours reproduced many of the effects on zonula occludens-1 and occludin expression and membrane localization.</p> <p>Conclusion</p> <p>Taken together, these data indicate that HIV-related proteins cause oxidant stress and alter the expression of critical tight junction proteins in the alveolar epithelium, resulting in barrier dysfunction.</p

    Computer software for business and specific purposes in wood industry

    Get PDF
    V 211 slovenskih mikro in majhnih lesnih podjetjih, katerih osnovna dejavnost (po SKD) zajema proizvodnjo pohištva za poslovne prostore, proizvodnjo kuhinjskega pohištva in proizvodnjo drugega pohištva, smo preučili razširjenost ter uporabo poslovnih in namenskih računalniških programov. Raziskava je temeljila na primerjalni analizi in oceni stanja programske opreme. Oceno stanja smo izvedli s pomočjo ankete, ki smo jo distribuirali prek različnih medijev. Odziv na anketo je bil v povprečju 23,7 %. Ocenimo lahko, da so računalniški programi v mikro in majhnih lesnih podjetjih na nekaterih področjih intenzivneje uporabljani kot na drugih. Ugotovili smo, da podjetja v večini uporabljajo pri poslovanju pisarniške programe, predvsem tiste podjetja Microsoft. Uporaba specializirane programske opreme je še precej omejena, saj jo pri poslovanju uporablja le 40 % preučevanih podjetij. Nekoliko bolj uporabljajo programsko opremo namenjeno konstruiranju (60 %).The range and usage of computer software for business and specific purposes were researched in 211 micro and minor wood firms, encompasing the production of office furniture, kitchen furniture and some other furniture as the basic activity, according to Statistical Classification Activities (SCA). The research was based on comparative analysis and software condition evaluation. Evaluation of the current situation was carried out by means of a questionnaire, distributed with the help of media. The response was as high as 23.7 %. It can be estimated that the computer software in these micro and minor wood firms is used more often in some areas than in others. It was found out that the firms use mainly office software- especially Microsoft ones. The usage of specialized software equipment is still quite limited in these firms. Only 40 % of the tested firms use is software for their business, meanwhile the equipment designed for construction is more frequently used (60 %)

    Intraspecific Diversity Regulates Fungal Productivity and Respiration

    Get PDF
    Individuals and not just species are key components of biodiversity, yet the relationship between intraspecific diversity and ecosystem functioning in microbial systems remains largely untested. This limits our ability to understand and predict the effects of altered genetic diversity in regulating key ecosystem processes and functions. Here, we use a model fungal system to test the hypothesis that intraspecific genotypic richness of Paxillus obscurosporus stimulates biomass and CO2 efflux, but that this is dependent on nitrogen supply. Using controlled experimental microcosms, we show that populations containing several genotypes (maximum 8) of the fungus had greater productivity and produced significantly more CO2 than those with fewer genotypes. Moreover, intraspecific diversity had a much stronger effect than a four-fold manipulation of the carbon:nitrogen ratio of the growth medium. The effects of intraspecific diversity were underpinned by strong roles of individuals, but overall intraspecific diversity increased the propensity of populations to over-yield, indicating that both complementarity and selection effects can operate within species. Our data demonstrate the importance of intraspecific diversity over a range of nitrogen concentrations, and the need to consider fine scale phylogenetic information of microbial communities in understanding their contribution to ecosystem processes

    Ralstonia syzygii, the Blood Disease Bacterium and Some Asian R. solanacearum Strains Form a Single Genomic Species Despite Divergent Lifestyles

    Get PDF
    The Ralstonia solanacearum species complex includes R. solanacearum, R. syzygii, and the Blood Disease Bacterium (BDB). All colonize plant xylem vessels and cause wilt diseases, but with significant biological differences. R. solanacearum is a soilborne bacterium that infects the roots of a broad range of plants. R. syzygii causes Sumatra disease of clove trees and is actively transmitted by cercopoid insects. BDB is also pathogenic to a single host, banana, and is transmitted by pollinating insects. Sequencing and DNA-DNA hybridization studies indicated that despite their phenotypic differences, these three plant pathogens are actually very closely related, falling into the Phylotype IV subgroup of the R. solanacearum species complex. To better understand the relationships among these bacteria, we sequenced and annotated the genomes of R. syzygii strain R24 and BDB strain R229. These genomes were compared to strain PSI07, a closely related Phylotype IV tomato isolate of R. solanacearum, and to five additional R. solanacearum genomes. Whole-genome comparisons confirmed previous phylogenetic results: the three phylotype IV strains share more and larger syntenic regions with each other than with other R. solanacearum strains. Furthermore, the genetic distances between strains, assessed by an in-silico equivalent of DNA-DNA hybridization, unambiguously showed that phylotype IV strains of BDB, R. syzygii and R. solanacearum form one genomic species. Based on these comprehensive data we propose a revision of the taxonomy of the R. solanacearum species complex. The BDB and R. syzygii genomes encoded no obvious unique metabolic capacities and contained no evidence of horizontal gene transfer from bacteria occupying similar niches. Genes specific to R. syzygii and BDB were almost all of unknown function or extrachromosomal origin. Thus, the pathogenic life-styles of these organisms are more probably due to ecological adaptation and genomic convergence during vertical evolution than to the acquisition of DNA by horizontal transfer

    Deletions in the Repertoire of Pseudomonas syringae pv. tomato DC3000 Type III Secretion Effector Genes Reveal Functional Overlap among Effectors

    Get PDF
    The γ-proteobacterial plant pathogen Pseudomonas syringae pv. tomato DC3000 uses the type III secretion system to inject ca. 28 Avr/Hop effector proteins into plants, which enables the bacterium to grow from low inoculum levels to produce bacterial speck symptoms in tomato, Arabidopsis thaliana, and (when lacking hopQ1-1) Nicotiana benthamiana. The effectors are collectively essential but individually dispensable for the ability of the bacteria to defeat defenses, grow, and produce symptoms in plants. Eighteen of the effector genes are clustered in six genomic islands/islets. Combinatorial deletions involving these clusters and two of the remaining effector genes revealed a redundancy-based structure in the effector repertoire, such that some deletions diminished growth in N. benthamiana only in combination with other deletions. Much of the ability of DC3000 to grow in N. benthamiana was found to be due to five effectors in two redundant-effector groups (REGs), which appear to separately target two high-level processes in plant defense: perception of external pathogen signals (AvrPto and AvrPtoB) and deployment of antimicrobial factors (AvrE, HopM1, HopR1). Further support for the membership of HopR1 in the same REG as AvrE was gained through bioinformatic analysis, revealing the existence of an AvrE/DspA/E/HopR effector superfamily, which has representatives in virtually all groups of proteobacterial plant pathogens that deploy type III effectors

    Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial spot of tomato and pepper is caused by four <it>Xanthomonas </it>species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, <it>Xanthomonas euvesicatoria </it>(<it>Xcv</it>) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10.</p> <p>Results</p> <p>We sequenced the genomes of <it>X. vesicatoria </it>(<it>Xv</it>) strain 1111 (ATCC 35937), <it>X. perforans </it>(<it>Xp</it>) strain 91-118 and <it>X. gardneri </it>(<it>Xg</it>) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced <it>Xcv </it>strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from <it>Xg </it>strain 101 and <it>Xv </it>strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in <it>Xcv</it>. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity.</p> <p>Conclusions</p> <p>Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster, and genes unique to individual strains, such as novel type III effectors and bacteriocin genes, have been identified providing new clues for our understanding of pathogen virulence, aggressiveness, and host preference. These analyses will aid in efforts towards breeding for broad and durable resistance in economically important tomato and pepper cultivars.</p

    Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii

    Get PDF
    Background: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. Results: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. Conclusion: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento CientIfico e Tecnologico (CNPq)Coordenacao para Aperfeicoamento de Pessoal de Ensino Superior (CAPES)Fundo de Defesa da Citricultura (FUNDECITRUS
    corecore