125 research outputs found

    Lithium Production in Companions of Accreting X-Ray Binaries by Neutron Spallation of C,N,O Elements

    Get PDF
    We examine the processes which could lead to the observed enhancement of Li and possibly other light elements (Be, B) in the companions of a number of X-ray novae. We conclude that one of the most promising mechanisms is the spallation of CNO elements on the surface of the companion induced by the neutron flux produced in the hot accretion flow onto the compact object. Direct production of the observed Li and its deposition onto the dwarf companion seem less likely, mainly because of the possibility of its destruction in the production region itself and difficulties in its deposition associated with the configuration of the companion's magnetic field. We discuss other potential observables of the above scenario.Comment: 23 pages Latex, of which 5 pages of tables, to appear in the Astrophysical Journal, Vol 512, Feb 10 issu

    Neutron capture and 2.2 MeV emission in the atmosphere of the secondary of an X-ray binary

    Get PDF
    We consider the production of 2.22 MeV radiation resulting from the capture of neutrons in the atmosphere of the secondary in an X-ray binary system, where the neutrons are produced in the accretion disk around the compact primary star and radiated in all directions. We have considered several accretion disk models (ADAF, ADIOS, SLE, Uniform-Temperature) and a varity of parameters (accretion rate, mass of the compact object, mass, temperature and composition of the secondary star, distance between the two objects, etc.). The neutron rates are calculated by a network of nuclear reactions in the accretion disk, and this is handled by a reaction-rate formulation taking into account the structure equations given by each accretion model. The processes undergone by the neutrons in the atmosphere of the companion star are studied in great detail, including thermalization, elastic and inelastic scatterings, absorption, escape from the surface, decay, and capture by protons. The radiative transfer of the 2.22 MeV photons is treated separately, taking into consideration the composition and density of the star's atmosphere. The final flux of the 2.22 MeV radiation that can be detected from earth is calculated taking into account the distance to the source, the direction of observation with respect to the binary system frame, and the rotation of the source, as this can lead to an observable periodicity in the flux. We produce phasograms of the 2.22 MeV intensity as well as spectra of the line, where rotational Doppler shift effects can lead to changes in the spectra that are measurable by INTEGRAL's spectrometer (SPI).Comment: 13 pages, 10 figures, A&A in pres

    Microquasars as sources of positron annihilation radiation

    Get PDF
    We consider the production of positrons in microquasars, i.e. X-ray binary systems that exhibit jets frequently, but not continuously. We estimate the production rate of positrons in microquasars, both by simple energy considerations and in the framework of various proposed models. We then evaluate the collective emissivity of the annihilation radiation produced by Galactic microquasars and we find that it might constitute a substantial contribution to the annihilation flux measured by INTEGRAL/SPI. We also discuss the possible spatial distribution of Galactic microquasars, on the basis of the (scarce) available data and the resulting morphology of the flux received on Earth. Finally, we consider nearby 'misaligned' microquasars, with jets occasionally hitting the atmosphere of the companion star; these would represent interesting point sources, for which we determine the annihilation flux and the corresponding light curve, as well as the line's spectral profile. We discuss the possibility of detection of such point sources by future instruments.Comment: 13 pages, 7 figures, accepted in A&

    The 511 keV emission from positron annihilation in the Galaxy

    Full text link
    The first gamma-ray line originating from outside the solar system that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990's with OSSE/CGRO showed that the emission is strongly concentrated towards the Galactic bulge. In the 2000's, the SPI instrument aboard ESA's INTEGRAL gamma-ray observatory allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge/disk luminosity ratio is larger than observed in any other wavelength. This mapping prompted a number of novel explanations, including rather "exotic ones (e.g. dark matter annihilation). However, conventional astrophysical sources, like type Ia supernovae, microquasars or X-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, contrary to the rather well understood propagation of high energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low energy (~MeV) positrons in the turbulent, magnetized interstellar medium, still remains a formidable challenge. We review the spectral and imaging properties of the observed 511 keV emission and we critically discuss candidate positron sources and models of positron propagation in the Galaxy.Comment: 62 pages, 35 figures. Review paper to appear in Reviews of Modern Physic

    Using Neural Networks to Perform Rapid High-Dimensional Kilonova Parameter Inference

    Get PDF
    On the 17th of August, 2017 came the simultaneous detections of GW170817, a gravitational wave that originated from the coalescence of two neutron stars, along with the gamma-ray burst GRB170817A, and the kilonova counterpart AT2017gfo. Since then, there has been much excitement surrounding the study of neutron star mergers, both observationally, using a variety of tools, and theoretically, with the development of complex models describing the gravitational-wave and electromagnetic signals. In this work, we improve upon our pipeline to infer kilonova properties from observed light-curves by employing a Neural-Network framework that reduces execution time and handles much larger simulation sets than previously possible. In particular, we use the radiative transfer code POSSIS to construct 5-dimensional kilonova grids where we employ different functional forms for the angular dependence of the dynamical ejecta component. We find that incorporating an angular dependence improves the fit to the AT2017gfo light-curves by up to ~50% when quantified in terms of the weighted Mean Square Error

    The all-sky distribution of 511 keV electron-positron annihilation emission

    Full text link
    We present a map of 511 keV electron-positron annihilation emission, based on data accumulated with the SPI spectrometer aboard ESA's INTEGRAL gamma-ray observatory, that covers approximately 95% of the celestial sphere. 511 keV line emission is significantly detected towards the galactic bulge region and, at a very low level, from the galactic disk. The bulge emission is highly symmetric and is centred on the galactic centre with an extension of 8 deg. The emission is equally well described by models that represent the stellar bulge or halo populations. The disk morphology is only weakly constrained by the present data, being compatible with both the distribution of young and old stellar populations. The 511 keV line flux from the bulge and disk components is 1.05e-3 ph cm-2 s-1 and 0.7e-3 ph cm-2 s-1, respectively, corresponding to a bulge-to-disk flux ratio in the range 1-3. Assuming a positronium fraction of 0.93 this translates into annihilation rates of 1.5e43 s-1 and 3e42 s-1, respectively. The ratio of the bulge luminosity to that of the disk is in the range 3-9. We find no evidence for a point-like source in addition to the diffuse emission, down to a typical flux limit of 1e-4 ph cm-2 s-1. We also find no evidence for the positive latitude enhancement that has been reported from OSSE measurements; our 3 sigma upper flux limit for this feature is 1.5e-4 ph cm-2 s-1. The disk emission can be attributed to the beta+ decay of the radioactive species 26Al and 44Ti. The bulge emission arises from a different source which has only a weak or no disk component. We suggest that Type Ia supernovae and/or low-mass X-ray binaries are the prime candidates for the source of the galactic bulge positrons. Light dark matter annihilation could also explain the observed 511 keV bulge emission characteristics.Comment: accepted for publication in A&

    SPI observations of positron annihilation radiation from the 4th galactic quadrant: sky distribution

    Full text link
    During its first year in orbit the INTEGRAL observatory performed deep exposures of the Galactic Center region and scanning observations of the Galactic plane. We report on the status of our analysis of the positron annihilation radiation from the 4th Galactic quadrant with the spectrometer SPI, focusing on the sky distribution of the 511 keV line emission. The analysis methods are described; current constraints and limits on the Galactic bulge emission and the bulge-to-disk ratio are presented.Comment: 4 pages, 2 figures, accepted for publication in the proceedings of the 5th INTEGRAL worksho

    Spectral analysis of the Galactic e+e- annihilation emission

    Full text link
    We present a spectral analysis of the e+e- annihilation emission from the Galactic Centre region based on the first year of measurements made with the spectrometer SPI of the INTEGRAL mission. We have found that the annihilation spectrum can be modelled by the sum of a narrow and a broad 511 keV line plus an ortho-Ps continuum. The broad line is detected with a flux of (0.35+/-0.11)e-3 s-1 cm-2. The measured width of 5.4+/-1.2 keV FWHM is in agreement with the expected broadening of 511 keV photons emitted in the annihilation of Ps that are formed by the charge exchange process of slowing down positrons with H atoms. The flux of the narrow line is (0.72+/-0.12)e-3 s-1 cm-2 and its width is 1.3+/-0.4 keV FWHM. The measured ortho-Ps continuum flux yields a fraction of Ps of (96.7+/-2.2)%. To derive in what phase of the interstellar medium positrons annihilate, we have fitted annihilation models calculated for each phase to the data. We have found that 49(+2,-23)% of the annihilation emission comes from the warm neutral phase and 51(+3,-2)% from the warm ionized phase. While we may not exclude that less than 23% of the emission might come from cold gas, we have constrained the fraction of annihilation emission from molecular clouds and hot gas to be less than 8% and 0.5%, respectively. We have compared our knowledge of the interstellar medium in the bulge and the propagation of positrons with our results and found that they are in good agreement if the sources are diffusively distributed and if the initial kinetic energy of positrons is lower than a few MeV. Despite its large filling factor, the lack of annihilation emission from the hot gas is due to its low density, which allows positrons to escape this phase.Comment: 12 pages, 6 figures, accepted in A&

    Efficient FPGA implementation of high-throughput mixed radix multipath delay commutator FFT processor for MIMO-OFDM

    Get PDF
    This article presents and evaluates pipelined architecture designs for an improved high-frequency Fast Fourier Transform (FFT) processor implemented on Field Programmable Gate Arrays (FPGA) for Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM). The architecture presented is a Mixed-Radix Multipath Delay Commutator. The presented parallel architecture utilizes fewer hardware resources compared to Radix-2 architecture, while maintaining simple control and butterfly structures inherent to Radix-2 implementations. The high-frequency design presented allows enhancing system throughput without requiring additional parallel data paths common in other current approaches, the presented design can process two and four independent data streams in parallel and is suitable for scaling to any power of two FFT size N. FPGA implementation of the architecture demonstrated significant resource efficiency and high-throughput in comparison to relevant current approaches within literature. The proposed architecture designs were realized with Xilinx System Generator (XSG) and evaluated on both Virtex-5 and Virtex-7 FPGA devices. Post place and route results demonstrated maximum frequency values over 400 MHz and 470 MHz for Virtex-5 and Virtex-7 FPGA devices respectively

    Data-driven expectations for electromagnetic counterpart searches based on LIGO/Virgo public alerts

    Get PDF
    Searches for electromagnetic counterparts of gravitational-wave signals have redoubled since the first detection in 2017 of a binary neutron star merger with a gamma-ray burst, optical/infrared kilonova, and panchromatic afterglow. Yet, one LIGO/Virgo observing run later, there has not yet been a second, secure identification of an electromagnetic counterpart. This is not surprising given that the localization uncertainties of events in LIGO and Virgo's third observing run, O3, were much larger than predicted. We explain this by showing that improvements in data analysis that now allow LIGO/Virgo to detect weaker and hence more poorly localized events have increased the overall number of detections, of which well-localized, gold-plated events make up a smaller proportion overall. We present simulations of the next two LIGO/Virgo/KAGRA observing runs, O4 and O5, that are grounded in the statistics of O3 public alerts. To illustrate the significant impact that the updated predictions can have, we study the follow-up strategy for the Zwicky Transient Facility. Realistic and timely forecasting of gravitational-wave localization accuracy is paramount given the large commitments of telescope time and the need to prioritize which events are followed up. We include a data release of our simulated localizations as a public proposal planning resource for astronomers
    • 

    corecore