The first gamma-ray line originating from outside the solar system that was
ever detected is the 511 keV emission from positron annihilation in the Galaxy.
Despite 30 years of intense theoretical and observational investigation, the
main sources of positrons have not been identified up to now. Observations in
the 1990's with OSSE/CGRO showed that the emission is strongly concentrated
towards the Galactic bulge. In the 2000's, the SPI instrument aboard ESA's
INTEGRAL gamma-ray observatory allowed scientists to measure that emission
across the entire Galaxy, revealing that the bulge/disk luminosity ratio is
larger than observed in any other wavelength. This mapping prompted a number of
novel explanations, including rather "exotic ones (e.g. dark matter
annihilation). However, conventional astrophysical sources, like type Ia
supernovae, microquasars or X-ray binaries, are still plausible candidates for
a large fraction of the observed total 511 keV emission of the bulge. A closer
study of the subject reveals new layers of complexity, since positrons may
propagate far away from their production sites, making it difficult to infer
the underlying source distribution from the observed map of 511 keV emission.
However, contrary to the rather well understood propagation of high energy
(>GeV) particles of Galactic cosmic rays, understanding the propagation of low
energy (~MeV) positrons in the turbulent, magnetized interstellar medium, still
remains a formidable challenge. We review the spectral and imaging properties
of the observed 511 keV emission and we critically discuss candidate positron
sources and models of positron propagation in the Galaxy.Comment: 62 pages, 35 figures. Review paper to appear in Reviews of Modern
Physic