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ABSTRACT

On the 17th of August, 2017 came the simultaneous detections of GW170817, a gravitational

wave that originated from the coalescence of two neutron stars, along with the gamma-ray burst

GRB170817A, and the kilonova counterpart AT2017gfo. Since then, there has been much excitement

surrounding the study of neutron star mergers, both observationally, using a variety of tools, and

theoretically, with the development of complex models describing the gravitational-wave and electro-

magnetic signals. In this work, we improve upon our pipeline to infer kilonova properties from observed

light-curves by employing a Neural-Network framework that reduces execution time and handles much

larger simulation sets than previously possible. In particular, we use the radiative transfer code POSSIS

to construct 5-dimensional kilonova grids where we employ different functional forms for the angular

dependency for the dynamical ejecta component. We find that incorporating an angular dependence

improves the fit to the AT2017gfo light-curves by up to ∼50% when quantified in terms of the weighted

Mean Square Error.

1. INTRODUCTION

The driving idea of multi-messenger astronomy is that

a single event observed through different messengers im-

proves our understanding of the physical processes. This

concept has gotten additional momentum through the

Binary Neutron Star (BNS) detection GW170817 (Ab-

bott et al. 2017a) connected with the observation of elec-

tromagnetic radiation from gamma-rays to radio waves
(Abbott et al. 2017b). This event followed the birth

of GW astronomy in 2015 (Abbott, B. P. et al. 2016),

brought about with the success of the Advanced Virgo

(Acernese et al 2015) and the Advanced LIGO (Aasi

et al 2015) interferometers in detecting GWs emitted

by compact object mergers. In general, BNS and Neu-

tron Star – Black Hole (NSBH) mergers may be ac-

companied by an optical/infrared counterpart, referred

to as a kilonova, which will give us important insights

into what is possibly one of the most dominant sites of

rapid neutron capture (r-process) elements in the Uni-

verse; see Metzger (2017) for a review. Our first and

as yet only confirmed discovery of a kilonova from a

BNS merger, AT2017gfo in NGC 4993 (D ∼ 40 Mpc)

(Coulter et al. 2017), was achieved through follow-up

of GW170817 by multiple telescope facilities around the

globe, and is an exceptional demonstration of the po-

tential of multi-messenger astronomy in contributing to

scientific knowledge (Abbott et al. 2017b). These detec-

tions were also accompanied by the discovery of short

gamma-ray burst GRB 170817A (Abbott et al. 2017c).

Through this event, we learned more about the afore-

mentioned r-process nucleosynthesis (e.g., Chornock et

al. 2017; Coulter et al. 2017; Cowperthwaite et al. 2017;

Pian et al. 2017; Smartt et al. 2017; Watson et al. 2019;

Kasliwal et al. 2019) and also placed constraints on

the expansion rate of the Universe (Abbott et al. 2017;

Guidorzi et al. 2017; Hotokezaka et al. 2019; Coughlin

et al. 2020; Dhawan et al. 2019; Dietrich et al. 2020) and

the neutron star equation of state (e.g., Bauswein et al.

2017; Margalit & Metzger 2017; Coughlin et al. 2019a,b;

Annala et al. 2018; Most et al. 2018; Radice et al. 2018;

Abbott et al. 2018; Lai et al. 2019; Dietrich et al. 2020;

Huth et al. 2021).

Inferring kilonova model parameters from observa-

tional data requires a thorough understanding of the

ejecta composition, behaviour, and morphology (e.g.,

Dietrich et al. 2020; Nedora et al. 2022; Nicholl et al.

2021; Breschi et al. 2021); in addition, there are vari-

ous parts of the parameter inference pipeline that must

be improved upon and optimized such that we are able

to efficiently utilize the available data and learn more
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about the progenitors. Radiative transfer simulations

have been most commonly used to generate expected

supernova and kilonova light-curves, (e.g., Tanaka 2016;

Kasen et al. 2017; Wollaeger et al. 2017; Bulla 2019;

Kawaguchi et al. 2020).

There are two major sources of ejecta from the progen-

itor system. The first is known as the dynamical ejecta,

ejected ‘dynamically’ around the moment of merger

through torque or shocks (at merger or in the early-

postmerger phase) (e.g., Metzger et al. 2008; Bauswein

et al. 2013). The second source of ejecta comes from the

post-merger wind, i.e., outflows from an accretion disk

formed around the central remnant, consisting of the

unbound debris resulting from the merger (e.g., Siegel

& Metzger 2018; Metzger 2019). The dynamical source

is ejected on a timescale of milliseconds, while the latter

is formed on a timescale of up to seconds.

There are two major dynamical ejection processes in

BNS mergers. The first is through shocks that forms

at the contact interface of the merging stars or at core

bounces in the early postmerger phase (Hotokezaka &

Piran 2015). The second component is the tidal ejecta,

and is due to tidal interactions that arise from the

non-axisymmetric gravitational forces at play in the bi-

nary system (Hotokezaka & Piran 2015; Metzger 2019).

Recent simulations (Radice et al. 2018; Nedora et al.

2022) show that the more neutron-rich, lower Ye ejecta

(Ye . 0.1) arises from the aforementioned tidal compo-

nent, and is located closer to the equatorial plane, while

the ejecta arising from the shock component tends to

have a relatively higher electron fraction (going up to

Ye ∼ 0.4) and is approximately isotropic.

The disk mass is ∼ 0.01 − 0.3M� (Oechslin & Janka

2006), and is usually much lower when the remnant im-

mediately collapses into a black hole; this is due to the

lack of time for the remnant to redistribute its angular

momentum and mass as it transforms from a differen-

tially rotating to a solid rotating body, thus preventing

the formation of a more massive disk (Metzger 2019).

A fraction of the disk is ejected in the form of a post-

merger disk wind, with the exact value being uncertain

and ranging from 20 to 40 per cent (e.g. Just et al. 2015;

Siegel & Metzger 2018; Miller et al. 2019; Fernández

et al. 2019; Fujibayashi et al. 2020). The post-merger

wind usually dominates the dynamical ejecta (Wu et al.

2016). Works such as Fernández & Metzger (2013) show

the disk wind ejecta Ye ranging within ∼ 0.2− 0.4 when

the remnant collapses into a black hole. The electron

fractions present in the case of both dynamical and post

merger wind cases are suitable for the production of

heavy r-process elements (Rosswog et al. 2014).

With the gravitational-wave detector networks’ fourth

observing run nearing, one needs to continue to improve

the instruments and software tools that we use to ana-

lyze the forthcoming multi-messenger detections. These

mergers bring rich knowledge to various fields of physics

and astronomy, from the understanding of such events

and the big, powerful jets of relativistic particles that

they produce, to the physical structure of both the neu-

tron stars (internally) and the matter that is ejected

in the merger, not to mention the detailed characteris-

tics of the gravitational waves that are emitted. Much

work is being done on the theoretical front to prepare

us for the ‘treasure trove’ of data from upcoming de-

tections. In particular, models of kilonovae are being

constructed with increased complexity and fine-tuning

(e.g., Korobkin et al. 2021; Zhu et al. 2021; Wollaeger

et al. 2021).

In this work, we use POSSIS (Bulla 2019), a Monte-

Carlo radiative transfer code, in order to produce

“model grids” that sample the parameter space for

any given ejecta morphology. In particular, we use an

updated version of POSSIS including improved heat-

ing rates and wavelength- and time-dependent opacities

from Tanaka et al. (2020) that depend on local proper-

ties of the ejecta (density, temperature and Ye). Details

about these new implementations will be discussed else-

where (Bulla et al., in prep). Previous works such as

Coughlin et al. (2018); Dietrich et al. (2020); Heinzel

et al. (2021) used Gaussian Process Regression (GPR)

to interpolate within kilonova grids to perform param-

eter estimation. Here, we introduce a Neural Network

(NN) framework that significantly enhances the speed

of the interpolation step and scales well for much larger

grids. In addition, due to the importance of understand-

ing the effects of different ejecta morphologies on the

computed light-curves, we explore different functional

forms for the angular dependence in the density profile

of the dynamical ejecta.

Our paper is structured as follows, in Sec. 2, we de-

scribe the NN architecture. In Sec. 3, we discuss and

evaluate the different density profiles for the dynamical

ejecta in the context of GW170817/AT2017gfo. Finally,

we summarize our conclusions and outline ways of mov-

ing forward in Sec. 4.

2. A NEW SURROGATE GENERATION

FRAMEWORK

2.1. Preprocessing

Instead of directly inputting our bolometric and pho-

tometric light-curves into our Neural Network for inter-

polation, we follow the procedure of Doctor et al. (2017)

and Coughlin et al. (2018), using Singular Value Decom-
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Figure 1. A diagram of the interpolation framework used
in this work. The input to our network is the model param-
eters, and the network is trained on a PCA-like projection of
our photometric and bolometric data onto the right-singular
vector. Five fully-connected layers are shown, and an MSE
loss function is employed.

position (SVD) to perform a dimensionality reduction

on our data and produce the principle components of

our light-curve vectors, i.e., a new basis for our data in

which different dimensions of the data are most uncorre-

lated. We then train our neural network on this output

in order to produce a so-called “surrogate model” that

interpolates our original model grid. Denoting our pho-

tometric and bolometric light-curves as τ (Θ), where Θ

represents the set of parameters for a given model, SVD

decomposes τ (Θ) as follows:

τ = UΣV T (1)

where Σ is a diagonal matrix containing the singular val-

ues of τ (Θ), and the columns of U and V are orthonor-
mal bases called the left-singular and right-singular vec-

tors, respectively. We can then obtain the principle com-

ponent analysis (PCA) output by projecting τ (Θ) onto

the right singular matrix:

τV = PCA (2)

Note that we first normalized our light curves before

performing PCA, and the right singular vector V was

truncated to 100 basis vectors. A train/validation split

of 90/10 was used.

2.2. Neural Network Architecture

Our NN consists of five ReLU-activated (Rectified

Linear Units, i.e., R(z) = max(0, z) for each neuron)

fully-connected layers, as shown in Figure 1, with the

first layer containing N weights corresponding to the

number of parameters for the model, three hidden lay-

ers, and the output layer having a number of weights

equal to the number of columns in our PCA output.

We used a batch size of 32 and trained for 200 epochs,

using a mean-square error (MSE) loss function.

The use of a NN is much more efficient for higher-

dimensional kilonova models than GPR, which usually

performs poorly when a model has more than four pa-

rameters. To demonstrate the performance of our in-

terpolation framework, we use a model (to be described

in-depth in the following sections) that has 5 parame-

ters and 1,260 total parameter combinations comprising

our simulation set. Training 10 different networks (one

for each photometric band u, g, r, i, z, y, J , H, K,

and in addition one for the bolometric luminosity) took

on the order of ∼ 40 mins. The MSE loss is shown as

a function of epoch in Figure 2. Our model does not

over- or under-fit the train data, since we can see very

similar performance on our validation set in the right

subplot as compared to the train set. In addition, our

network converges very quickly, so even 50 epochs would

be sufficient in constructing our surrogate.

We also compare our NN framework to state-of-the-

art interpolation methods, such as the GPR framework

used in Coughlin et al. (2018); Heinzel et al. (2021), as

well as that in Ristic et al. (2021), in terms of its com-

putational efficiency. It took upwards of 13 hours for

the former GPR implementation from Coughlin et al.

(2018) (which uses the scikit-learn library) to con-

struct our model in the u-band, and so we only use the

framework from Ristic et al. (2021) in this comparison.

The performance for each model is shown in Figure 3.

In addition to the benefits in terms of convergence time,

the output of the NN interpolation scheme takes up a

lot less memory – on the order of tens of MB, in compar-

ison to a few GBs for the scikit-learn GPR scheme.

Even more importantly, the total time it takes to per-

form parameter inference is significantly reduced due to

the much simpler loading procedure for NNs; for the

5-dimensional model used here, loading for all of the

bands and the bolometric luminosity takes a total of

∼700 ms for the NN, while for the GPR approach from

Ristic et al. (2021), it takes ∼ 80 min (since some com-

ponents need to be recalculated1). This is a significant

improvement when considering that the parameter in-

ference takes ≈20 min excluding the loading step.

Future work in improving the performance of our

model includes incorporating batch normalization, drop

1 There may be some room for improvement in loading for the
GPR method, so consider this an upper limit on the execution
time.
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Figure 2. The MSE loss is shown for the u, g, r, i, z, y, J , H, and K bands, as well as for the bolometric luminosity. The loss
for the train set is shown in the left subplot, and for the validation set in the right subplot. After ∼ 200 epochs, the network
tends to over-fit the train data, so we stop training at this point.
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Figure 3. Convergence time for all of the photometric bands
used in this work, as well as for the bolometric luminosity.
The NN framework is shown in dark purple, while the inter-
polation scheme from Ristic et al. (2021) is shown in light
purple.

out layers, and various other easily implementable tech-

niques. The wealth of developments in deep learning

allows for a significant improvement in computational

efficiency whilst still maintaining high accuracies and

developing surrogate models with high fidelity.

3. ANGULAR DEPENDENCIES IN THE

DYNAMICAL EJECTA

Numerical relativity simulations provide valuable in-

formation about what we can expect from the ejected

matter in the merger of BNSs. As the field develops,

these simulations have become more and more complex,

incorporating neutrino transport and more realistic neu-

tron star equations of state. We know that there are two

primary ejection processes, described in Section 1, but

the exact geometry of each of these components are now

known; note that also the ejecta opacities are another

point of uncertainty in kilonova simulations and we re-

fer to Appendix A for a preliminary exploration of this.

Generally, the density profile of the post-merger wind is

thought to be relatively spherically symmetric, while the

density profile of the dynamical ejecta will have an angu-

lar dependence such that the mass is more concentrated

in equatorial regions as compared to polar regions (e.g.,

Dietrich & Ujevic 2017; Kawaguchi et al. 2020; Nedora

et al. 2022).

There are various functional forms that have been

used in kilonova modelling to incorporate this angular

dependency into the dynamical ejecta. We will explore a

few of them, and then use data from AT2017gfo to infer

which provides the best fit to the observed light-curves.

We remark that in our simulations, we will only con-

sider the case in which the post-merger wind is slower

than the dynamical ejecta. We use the so-called Spheri-

cal segment-Spherical Cap geometry (shortened as SSCr,

with r signifying that re-processing between the differ-

ent ejecta components is taken into account); see the

left-most geometry in Figure 1 of Heinzel et al. (2021).

The density profiles for the different ejecta components

are represented as follows:

ρ(r, t) ∝

r−αt−3 vpm,min ≤ r/t ≤ vpm,max

η(θ)r−αt−3 vpm,max ≤ r/t ≤ vdyn,max

where we set α=3, vpm,min = 0.025c, vpm,max = 0.08c,

vdyn,max = 0.3c. η(θ) is the term introducing the angular

dependence with respect to θ, the angle measured from
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the polar axis, into the dynamical ejecta. The forms

that we will first explore are:

1) a sinusoidal relationship, i.e., η(θ) = sin2(θ),

also used by Perego et al. (2017) based on numerical-

relativity simulations from Radice et al. (2018); and

2) a function defined in Kawaguchi et al. (2020):

η(θ) = (1−Θ(θ))fd + Θ(θ) (3)

Θ(θ) =
1

1 + exp [−10(θ − π/4])]
(4)

where fd determines the strength of the angular depen-

dence from equatorial to polar angles. We will call the

latter the “Kawaguchi Model.” As can be seen in Fig-

ure 4, with the sinusoidal functions, we have a very

gradual increase, whereas with the dependency from

Kawaguchi et al. (2020) the density profile will be much

more concentrated for π/4 ≤ θ ≤ 3π/4. For our

0 45 90 135 180
 [deg]

0.0

0.5

1.0

(
)

Kawaguchi,fd = 0.01
Kawaguchi,fd = 0.2
Kawaguchi,fd = 0.5
Kawaguchi,fd = 0.8
Kawaguchi,fd = 1.0

sin2( )

Figure 4. Different functional forms for the angular depen-
dency in the dynamical ejecta. This is shown for sin2(θ) and
Equations (3) and (4). θ represents the angle from the polar
axis.

first analysis here, we will be pinning fd at 0.01 as

done in Kawaguchi et al. (2020), since this produces

the strongest angular dependency and will be a use-

ful comparison. Our model has the following four free

parameters: the dynamical ejecta mass Mej,dyn, post-

merger wind ejecta mass Mej,dyn, half-opening angle of

the lanthanide-rich component of the dynamical ejecta

φ, and the observing angle θobs. For the dynamical and

post-merger wind ejecta masses, we perform logarith-

mic sampling across the interval [0.001, 0.1]. Our entire

sample set used to generate our model grids is shown in

Table 1.

We generate 3 model grids: 1) no angular depen-

dence, 2) angular dependence η = sin2(θ), and 3) the

Kawaguchi model with fd=0.01. We thus run POSSIS

Table 1. The parameters of our model and the sample values for
which we run POSSIS.

Parameters Samples

Mej,dyn/M� [0.001, 0.00251, 0.00631, 0.0158, 0.0398, 0.1]

Mej,win/M� [0.001, 0.00251, 0.00631, 0.0158, 0.0398, 0.1]

φ [deg] [0, 15, 30, 45, 60, 75, 90]

cos (θobs) [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

over the aforementioned parameter space, generating

6 × 6 × 7 = 252 simulations for each model, and then

used the NN interpolation described in Section 2 to

interpolate the grid. We then perform parameter in-

ference and find the maximum likelihood estimates for

AT2017gfo using PyMultiNest, which is capable of per-

forming both model selection and parameter inference.

Using PyMultiNest, we extract posterior distributions

for each of the aforementioned parameters. We assume

uniform priors that extend over the limits of the grid in

the parameter space. The results of the inference (i.e.,

the best-fit light-curves), assuming ±1 mag systematic

error, for each of these models are shown in Figure 5.

Inspecting by eye, we can see in Figure 5 that across

all bands the sin2(θ) and Kawaguchi models result in

residuals closer to 0. We can further quantify this by

obtaining the MSE for each model. However, since the

Local Thermodynamic Equilibrium (LTE) assumption

in POSSIS is likely to fail at late times when the ejecta

become optically thin, and the brighter early-time emis-

sion is more important for observational purposes, it is

reasonable to perform a Weighted MSE (WMSE) prior-

itizing the early observations. We thus use the following

equation:

WMSE =
1

n

∑n−1
i=0 ωi(Mobs −Mpred)2∑n−1

i=0 ωi
(5)

where ωi = ln (|Mobs|+ 1) + 1. Having done so, we ob-

tain the WMSE values shown in Table 2, and verify our

conclusion that incorporating some form of an angular

dependence improves the fit to AT2017gfo across almost

all bands.

The parameter fd allows us also to assess which depen-

dence provides the best fit to the measured light-curves.

In Figure 6, we show the 2D density profile for different

fd’s (0.01, 0.5, 1.0) for comparison.

For this analysis, we include fd as an additional pa-

rameter to those listed in Table 1, sampling fd =

[0.01, 0.2, 0.5, 0.8, 1.0]. This increases our simulation set

to 1260 simulations. The resulting corner plot of our

posteriors is shown in Figure 7. We also include the
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Figure 6. 2D dynamical ejecta density profiles for fd=0.01,
fd=0.5, fd=1.0.

WMSE values with our maximum-likelihood fd in Ta-

ble 2.

We can see that fd ∼ 0.50+0.28
−0.32 provides the most

optimal fit. When fitting for fd, the previous WMSE

of 0.0333 decreases to 0.0311. The fit is significantly

better in redder bands with fd=0.50, while it would be

better using a stronger dependency fd = 0.01 with re-

spect to bluer g and r bands. In order to confirm this

behavior, we also run the inference with an assumed sys-

tematic error of 0.5 mag (instead of 1.0), and find that

the distribution is even more clearly distributed around

fd ∼ 0.6, and the WMSE further decreases to 0.0252. A

moderate angular dependence is thus preferred.

To finalize our exploration of different angular de-

pendencies, we summarize the inferred constraints on

Mej,pm, Mej,dyn, φ, and θobs for each model in Table 3.

4. CONCLUSION

In this work, we have modified and improved upon the

present parameter inference pipeline used to infer ejecta

parameters from observed kilonova light-curves (Cough-

Table 2. WMSE values for each band and model, for
when no angular dependence is incoporated, versus a
sin2(θ) dependency, versus the Kawaguchi equation when
pinning fd at 0.01, and finally when allowing fd to vary
(i.e., fd = 0.50).

Band Models

None sin2(θ) fd = 0.01 best-fit fd

g 0.0642 0.0571 0.0291 0.0738

r 0.0461 0.0127 0.0204 0.0227

i 0.0242 0.0119 0.0154 0.0034

z 0.0771 0.0313 0.0160 0.0109

J 0.0781 0.0164 0.0649 0.0317

H 0.0846 0.0593 0.0506 0.0412

K 0.0249 0.0168 0.0370 0.0340

average 0.0570 0.0294 0.0333 0.0311

lin et al. 2018; Dietrich et al. 2020). We constructed

an NN framework that sufficiently models the sampled

lightcurves and produces a surrogate model with a much

improved computational efficiency as compared to pre-

vious surrogate construction methods.

We explored the possible nature of AT2071gfo’s ejecta

geometry. Specifically, we looked at the angular de-

pendence in the density profile of the dynamical ejecta,

showing that some form of angular dependence is bene-

ficial and provides better fits to GW710817/AT2017gfo,
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Table 3. Resultant posteriors for Mej,pm, Mej,dyn, φ, and θobs for each of the models explored
in this section. Uncertainties are shown at the 15th and 85th percentiles.

Model Parameters

η(θ) Mej,dyn [×10−3M�] Mej,pm [M�] φ [deg] θobs [deg]

1 4.57+21.88
−2.48 0.110+0.0488

−0.0302 44.29+11.85
−13.69 32.01+19.38

−19.00

sin2(θ) 3.09+18.29
−1.51 0.0912+0.209

−0.032 36.03+14.04
−12.77 24.86+24.89

−17.43

kawaguchi (fd = 0.01) 19.05+35.90
−11.98 0.0832+0.0456

−0.0405 26.95+12.28
−8.03 37.87+15.77

−19.50

kawaguchi (varied fd) 5.89+15.49
−3.43 0.0977+0.0645

−0.0236 29.32+17.25
−10.16 25.84+18.18

−17.72
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−0.38
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Figure 7. Corner plot showing the resulting posteriors for
our model with fd as a free parameter. We can see that all
of our inferred parameters are within reasonable ranges and
that the distribution for fd is centered around 0.50.

with the sin2(θ) and the Kawaguchi functional forms

both outperforming the model with no angular depen-

dence. The sin2(θ) dependence improves the fit across

all bands by ∼50%.

When using the Kawaguchi equation – parameterized

by fd, which is approximately the ratio of the density

in the polar region (0 ≤ θ ≤ π/4) to that in the equa-

torial region (π/4 ≤ θ ≤ π/2) – to study the angular

dependence, we found that fd ∼ 0.50 is most suitable.

Fitting for fd especially improves performance in the

redder bands, decreasing the WMSE by 34% when con-

sidering lightcurves in the i-band and onwards.

Although we explored one specific aspect of the ejecta

structure in this work, and there have been other re-

cent explorations of different kilonova ejecta morpholo-

gies (Darbha & Kasen 2020; Heinzel et al. 2021; Ko-

robkin et al. 2021), there is still much to explore. There

are countless other geometries that could be considered

for the kilonova ejecta, so an interesting path forward

would be performing inference on a “super-geometry”

that samples a much wider range of possible ejecta mor-

phologies.
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APPENDIX

A. INTRODUCING AN OPACITY-SCALING PARAMETER

Our simulations use state-of-the-art opacities for r-process elements (Tanaka et al. 2020). However, uncertainties

in the opacities are likely to be present due to the challenges in modelling the myriad of line transitions expected for

these heavy elements.

Given these inherent uncertainties, we introduce the free parameter ακ that scales the opacities, and in turn, fine-

tunes the emitted flux and color of the kilonova. We assume, for simplicity, that the relative uncertainties are constant

across time and wavelength, although this is likely to be more complicated in reality. In exploring this, we use the

log10(Mej,dyn/M�) = −1.36+0.22
−0.75
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Figure 8. Posteriors showing that ακ has a bimodal distribution when fit to GW170817/AT2017gfo lightcurves and a sin2(θ)
dependency is assumed.

sin2(θ) model, given its good performance in Section 3. We use the same sample set as in Table 1, including our

new parameter ακ=[0.75,1.0,1.25]. The resulting corner plot is shown in Figure 8, and we can clearly see a bimodal

distribution, with one peak centered at ακ ∼ 1.04, and one centered at ∼ 0.75.

Hence, while at first glance it seems that introducing an opacity rescaling might improve the performance of the

model, more work is required for a reliable estimation of the opacities. In particular, the strong bimodal nature of the

distribution indicates that a simple time-independent rescaling of the opacities, as employed in this work, might not

be applicable. And so, further work exploring either the temporal or the wavelength dependence of the ejecta opacities

would be interesting, and may serve to limit the associated systematic errors.
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