335 research outputs found

    Electron energy spectrum and magnetic interactions in high-T(sub c) superconductors

    Get PDF
    The character of magnetic interactions in La-Sr-Cu-O and Y-Ba-Cu-O systems is of primary importance for analysis of high-T(sub c) superconductivity in these compounds. Neutron diffraction experiments showed the antiferromagnetic ground state for nonsuperconducting La2CuO4 and YBa2Cu3O6 with the strongest antiferromagnetic superexchange being in the ab plane. The nonsuperconducting '1-2-3' system has two Neel temperatures T sub N1 and T sub N2. The first one corresponds to the ordering of Cu atoms in the CuO2 planes; T sub N2 reflects the antiferromagnetic ordering of magnetic moments in CuO chains relatively to the moments in the planes T sub N1 and T sub N2 depend strongly on the oxygen content. Researchers describe magnetic interactions in high-T superconductors based on the Linear Muffin-Tin Orbitals (LMTO) band structure calculations. Exchange interaction parameters can be defined from the effective Heisenberg hamiltonian. When the magnetic moments are not too large, as copper magnetic moments in superconducting oxides, J sub ij parameters can be defined through the non-local magnetic susceptibility of spin restricted solution for the crystal. The results of nonlocal magnetic susceptibility calculations and the values of exchange interaction parameters for La CuO and YBa2Cu3O7 systems are given in tabular form. Strong anisotropy of exchange interactions in the ab plane and along the c axis in La2CuO4 is obviously seen. The value of Neel temperature found agrees well with the experimental data available. In the planes of '1-2-3' system there are quite strong antiferromagnetic Cu-O and O-O interaction which appear due to holes in oxygen subbands. These results are in line with the magnetic model of oxygen holes pairing in high-T(sub c) superconductors

    Crystal chemical and quantum chemical studies of Ba(Sr)-Nb oxide compounds

    Get PDF
    The information available on the BaO(SrO)-NbO-NbO2 system with the niobium atom in the lower oxidation degree is very limited. Very few compounds have been found previously in this system. They are BaNbO3, SrxNbO3(0,7=x=1), Ba2Nb2O9, SrNb8O14; and some suggestions on the BaNb8O14 existence have been made also. At the same time Nb-based oxide compounds could be quite interesting in the search of new noncopper high T(sub c) superconductors Researchers studied Ba(Sr) NbxO2x-2 and Ba2(Sr2)-NbxO2x-1 compositions in the phase diagram of BaO(SrO)-NbO-NbO2 system. The synthesis of the materials was carried out in vacuum at the temperatures of 1000 to 1500 C. Barium carbonate and niobium pentoxide were used as initial components. X-ray analysis was carried out

    Особенности критериев научности в социально-гуманитарных науках

    Full text link
    It is shown that scientific knowledge is characterized by after-following scientific criteria: 1) evidence (ratsinalnost), 2) consistency, 3) empirical verifiability, 4) the reproduction of the empirical material, 5) validity, 6) consistency, 7) essentsialnost, 8) ability to development. The features of the functioning of these criteria in the social sciences and humanitiesПоказано, что для научного познания характерны следующие критерии научности: 1) доказательность (рацинальность), 2) непротиворечивость, 3) эмпирическая проверяемость, 4) воспроизведимость эмпирического материала, 5) общезначимость, 6) системность, 7) эссэнциальность, 8) способность к развитию. Раскрыты особенности функционирования этих критериев в социально-гуманитарных наука

    Объяснение и его особенности в социально-гуманитарных науках

    Full text link
    The essence and the following explanation: deductivenomological, phenomenological, functional, typological, rational, teleological (goal, intentional). The necessity of taking into account the high degree of polideterminizma in the social and humanitarian sphere. Due to the high degree polideterminizma objects explanation in the social sciences and humanities is more pluralistic and hypothetical than in the natural sciencesРаскрыты сущность и следующие виды объяснения: дедуктивно-номологическое, феноменологическое, функциональное, типологическое, рациональное, телеологическое (целевое, интенциональное). Отмечена необходимость учёта высокой степени полидетерминизма в социально-гуманитарной сфере. В силу высокой степени полидетерминизма объектов объяснение в социально-гуманитарных науках является более плюралистическим и гипотетическим, чем в естественных наука

    Possibility to realize spin-orbit-induced correlated physics in iridium fluorides

    Get PDF
    Recent theoretical predictions of "unprecedented proximity" of the electronic ground state of iridium fluorides to the SU(2) symmetric jeff=1/2j_{\mathrm{eff}}=1/2 limit, relevant for superconductivity in iridates, motivated us to investigate their crystal and electronic structure. To this aim, we performed high-resolution x-ray powder diffraction, Ir L3_3-edge resonant inelastic x-ray scattering, and quantum chemical calculations on Rb2_2[IrF6_6] and other iridium fluorides. Our results are consistent with the Mott insulating scenario predicted by Birol and Haule [Phys. Rev. Lett. 114, 096403 (2015)], but we observe a sizable deviation of the jeff=1/2j_{\mathrm{eff}}=1/2 state from the SU(2) symmetric limit. Interactions beyond the first coordination shell of iridium are negligible, hence the iridium fluorides do not show any magnetic ordering down to at least 20 K. A larger spin-orbit coupling in iridium fluorides compared to oxides is ascribed to a reduction of the degree of covalency, with consequences on the possibility to realize spin-orbit-induced strongly correlated physics in iridium fluorides

    Valerij Ivanovič Grubov, 70 Jahre alt

    Get PDF
    Obituary of Russian scientist Valerij Ivanovič Grubov (born February 3, 1917, died February 1987)

    Electron energy spectrum and magnetic interactions in high-Tc superconductors

    Get PDF
    The character of magnetic interactions in La-Sr-Cu-O and Y-Ba-Cu-O systems is of primary importance for analysis of high-T(sub c) superconductivity in these compounds. Neutron diffraction experiments showed the antiferromagnetic ground state for nonsuperconducting La2CuO4 and YBa2Cu3O6 with the strongest antiferromagnetic superexchange being in the ab plane. The nonsuperconducting '1-2-3' system has two Neel temperatures T(sub N1) and T(sub N2). The first one corresponds to the ordering of Cu atoms in the CuO2 planes; T(sub N2) reflects the antiferromagnetic ordering of magnetic moments in CuO chains relatively to the moments in the planes T(sub N1) and T(sub N2) which depend strongly on the oxygen content. Researchers describe magnetic interactions in high-T superconductors based on the Linear Muffin-Tin Orbitals (LMTO) band structure calculations. Exchange interaction parameters can be defined from the effective Heisenberg Hamiltonian. When the magnetic moments are not too large, as copper magnetic moments in superconducting oxides, J(sub ij) parameters can be defined through the non-local magnetic susceptibility of spin restricted solution for the crystal. The results of nonlocal magnetic susceptibility calculations and the values of exchange interaction parameters for La CuO and YBa2Cu3O7 systems are given in tabular form. Strong anisotropy of exchange interactions in the ab plane and along the c axis in La2CuO4 is obviously seen. The value of Neel temperature found agrees well with the experimental data available. In the planes of '1-2-3' system there are quite strong antiferromagnetic Cu-O and O-O interaction which appear due to holes in oxygen subbands. These results are in line with the magnetic model of oxygen holes pairing in high-T(sub c) superconductors

    Biochemistry

    Get PDF
    www.elsevier.com/locate/yabio SigniWcant enhancement of Xuorescence on hybridization of a molecular beacon to a target DNA in the presence of a site-speciWc DNA nickas

    A tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system

    Get PDF
    We present a tight-binding potential for transition metals, carbon, and transition metal carbides, which has been optimized through a systematic fitting procedure. A minimal basis, including the s, p electrons of carbon and the d electrons of the transition metal, is used to obtain a transferable tight-binding model of the carbon-carbon, metal-metal and metal-carbon interactions applicable to binary systems. The Ni-C system is more specifically discussed. The successful validation of the potential for different atomic configurations indicates a good transferability of the model and makes it a good choice for atomistic simulations sampling a large configuration space. This approach appears to be very efficient to describe interactions in systems containing carbon and transition metal elements
    corecore