brought to you by CORE

N92-21660

ELECTRON ENERGY SPECTRUM AND MAGNETIC INTERACTIONS

IN HIGH-T SUPERCONDUCTORS

S.A.Turshevski, A.I.Liechtenstein, V.P.Antropov, V.A.Gubanov

Institute of Chemistry and Institute of Metal Physics,

Ural Science Center, Academy of Sciences, Sverdlovsk, USSR

The character of magnetic interactions in La-Sr-Cu-O and Y-Ba-Cu-O systems is of primary importance for analysis of high-T_C superconductivity in these compounds. Neutron diffraction experiments showed the antiferromagnetic ground state for nonsuperconducting La₂CuO₄ and YBa₂Cu₃O₆ with the strongest antiferromagnetic superexchange being in the ab plane [1,2]. Nonsuperconducting "1-2-3" system has even two Neel temperatures T_{N1} and T_{N2} . The first one corresponds to the ordering of Cu atoms in the CuO₂ planes, T_{N2} reflects the antiferromagnetic ordering of magnetic moments in CuO chains relatively to the moments in the planes T_{N1} and T_{N2} depend strongly on the oxygen content [3] (T_{N1} =450 K for X=O,1 and T_{N2} =80 K, but T_{N1} =230 K and T_{N2} =10 K for

x = 0.35).

We have tried to describe magnetic interactions in high-T superconductors basing on theLMTO band structure calculations. Exchange interaction parameters can be defined from the effective Heisenberg hamiltonian:

$$H_{ex} = -1/2 \sum_{i,j} J_{i,j} S_i S_j$$
(1)

When the magnetic moments are not too large, as copper magnetic moments in superconducting oxides, J_{ij} parameters can be defined through the non-local magnetic susceptibility of spin-restricted solution for the crystal [4,5]:

$$\mathbf{J}_{ij} = \frac{1}{2} \frac{\mathbf{I}_{i} \cdot \mathbf{I}_{j}}{\mathbf{S}_{i} \cdot \mathbf{S}_{j}} \sum_{\mathbf{LL}'} \chi_{\mathbf{LL}'}^{ij}$$
(2)

$$\chi_{LL}^{ij}$$
, = $1/\pi \int^{F} Im G_{LL}^{ij}$, (E) $G_{L',L}^{ji}$ (E) dE , (3)

where

$$\mathbf{G}_{LL}^{ij} = 1/\Omega_{\mathbf{BZ}_{\mathbf{B}\mathbf{Z}}} d\vec{k} \sum_{n} \frac{\psi_{nl}(\vec{k})\psi_{nl}^{*}(\vec{k})}{\mathbf{E}-\mathbf{E}_{n}(\vec{k})} e^{i\vec{k}\cdot\vec{R}_{ij}}$$
(4)

PRECEDING PAGE BLANK NOT FILMED

- is the nondiagonal Green function which can be calculated through the energy spectrum $E_n(\vec{k})$ and $\psi_{nl}(\vec{k})$ of the LMTO-hamiltonian. I_i in formulae (2) is interatomic exchange parameters of atom i. Due to the sharp dependence of nondiagonal Green function $G_{LL}^{i,j}(E)$ on the E the integral (3) should be calculated as contour integral in complex plane.

The results of nonlocal magnetic susceptibility calculations and the values of exchange interaction parameters for La CuO and YBa Cu O, systems are given in the Table.

Strong anisotropy of exchange interactions in the ab plane and along the c axis in La_2CuO_4 is obviously seen. The value of Neel temperature found agrees well with the experimental data available. In the YBa₂Cu₃O₇ system there is strong

antiferromagnetic Cu-O-Cu interaction in the CuO_2 plane, which

results in antiferromagnetic ground state of YBa Cu O.

Superexchange of Cu1-O4-Cu2 type is antiferromagnetic also, in accordance with the experiment. Using the simplest mean field approximation $T_N = \frac{1}{9} |J| zS(S+1)$, where z is the number of the

nearest magnetic neighbours, it is possible to estimate Neel temperature values. They are $T_{N1} = 265-314$ K, $T_{N2} = 61$ K agree

well with the experimental data. Large ferromagnetic moment exchange in Cu1-O4-Cu1 chains (which follows from NMR experiments [6] also) does not influence antiferromagnetic ordering, as when $\delta = 1$ all the chaines are broken. In the planes of "1-2-3" system there are quite strong

In the planes of 1-2-3 system there are quite strong antiferromagnetic Cu-O and O-O interaction which appear due to holes in oxigen subbands. These results are in line with the magnetic model of oxigen holes pairing in high-T_c superconductors

suggested in [7].

We have performed also a number of LMTO spin-polarised calculations for $GdBa_2Cu_3O_3$ and $GdBa_2Cu_3O_7$ both for ferromagnetic and antiferromagnetic ordering of magnetic moments. For antiferromagnetic state the energy gap of 0,04 ev is formed at the Fermi level. Spin splitting of Gd f-states equals to 5 ev, and magnetic moment of Gd atoms is $7.3 \ \mu_{\rm B}$. The estimation of stability parameters [8] leads to the conclusion of more stable antiferromagnetic ordering: the difference of J_O parameters is 230 K (O_G) and 180 K (O₇). The value of s-f integral in antiferromagnetic phase of GdBa₂Cu₃O₇ appears to be about 20 K, and correspond to small changes of T_c when Gd atoms enter the crystal lattice.

pair	R _{Uj}	$\chi_{dd(p)}^{()}$ (mRy ⁻¹)	J ^{' j} (K)
YBa ₂ Cu ₃ O ₇			
Cu2-02-Cu2	(0 1 0)	-50,8	-157
Cu2-03-Cu2	(100)	-42,8	-132
Cu1-04-Cu2	(0 0 1)	-9,9	-31
Cu1-01-Cu1	(0 1 0)	72,5	225
Cu2-02	(0,5 0 0)	112,3	545
02-02	(0,5 0,5 0)	35,5	270
La ₂ Cu0 ₄			
Cu-01-Cu	(100)	-73,5	227
Cu-O2-Cu	(0 0 1)	-0,45	1,4

Table. Exchange interaction parameters for $YBa_2Cu_3O_7$ and La_2CuO_4 (for s=1/2 and $I_{Cu}=0.07$ Ry, $I_0=0.11$ Ry)

REFERENCES

- [1] D.Vaknin, S.K.Sinha, D.E.Moncton et.al. Phys.Rev.Lett.58(1987)2801
- [2] W.I.F.David, W.T.A.Harrison, J.M.F.Gunn. Nature 327(1987)310
- [3] G.Shirane, ICM'88, Paris, Abstracts, p.295
- [4] V.A.Gubanov, S.A.Turshevski et.al. Physica C, 153-155(1988)123
- [5] K.Terakura, N.Hamada et.al.J.Phys.F.12(1982)1661
- [6] B.A.Aleksashin, A.M.Bogdanovich et.al.Pisma v ZETF, 48(1988)263
- [7] G.Chen and W.A.Goddard, Science 239(1988)899
- [8] Liechtenshtein A.I., Katsnelson M.I. et al. JMMM,65(1987)41