1,427 research outputs found
A Comparison of Machine Learning Techniques for Taxonomic Classification of Teeth from the Family Bovidae
This study explores the performance of machine learning algorithms on the classification of fossil teeth in the Family Bovidae. Isolated bovid teeth are typically the most common fossils found in southern Africa and they often constitute the basis for paleoenvironmental reconstructions. Taxonomic identification of fossil bovid teeth, however, is often imprecise and subjective. Using modern teeth with known taxons, machine learning algorithms can be trained to classify fossils. Previous work by Brophy et al. [Quantitative morphological analysis of bovid teeth and implications for paleoenvironmental reconstruction of plovers lake, Gauteng Province, South Africa, J. Archaeol. Sci. 41 (2014), pp. 376–388] uses elliptical Fourier analysis of the form (size and shape) of the outline of the occlusal surface of each tooth as features in a linear discriminant analysis (LDA) framework. This manuscript expands on that previous work by exploring how different machine learning approaches classify the teeth and testing which technique is best for classification. In addition to LDA, four other machine learning techniques were considered (neural networks, nuclear penalized multinomial regression,random forests, and support vector machines) with support vector machines and random forests performing the best in terms of log loss and classification rate
Fluorescently labeled circular DNA molecules for DNA topology and topoisomerases
DNA topology plays essential roles in several fundamental biological processes, such as DNA replication, recombination, and transcription. Typically agarose gel electrophoresis is employed to study DNA topology. Since gel electrophoresis is time-consuming and labor intensive, it is desirable to develop other methods, such as fluorescence-based methods, for such studies. In this paper we report the synthesis of a type of unique fluorescence-labeled DNA molecules that can be used to study DNA topology and topoisomerases by fluorescence resonance energy transfer (FRET). Specifically, we inserted an 82 nt. synthetic DNA oligomer FL905 carrying a 42 nt. AT sequence with fluorescein and dabcyl labels into a gapped DNA molecule to generate relaxed and supercoiled pAB1_FL905. Since the fluorescence intensity of pAB1_FL905 is dependent on its supercoiling status, pAB1_FL905 is a powerful tool to study DNA topology and topoisomerases by FRET. pAB1_FL905 can also be developed into rapid and efficient high-throughput screening assays to identify inhibitors that target various DNA topoisomerases
Identification and Characterization of \u3cem\u3eOGG1\u3c/em\u3e Mutations in Patients with Alzheimer\u27s Disease
Patients with Alzheimer\u27s disease (AD) exhibit higher levels of 8-oxo-guanine (8-oxoG) DNA lesions in their brain, suggesting a reduced or defective 8-oxoG repair. To test this hypothesis, this study investigated 14 AD patients and 10 age-matched controls for mutations of the major 8-oxoG removal gene OGG1. Whereas no alterations were detected in any control samples, four AD patients exhibited mutations in OGG1, two carried a common single base (C796) deletion that alters the carboxyl terminal sequence of OGG1, and the other two had nucleotide alterations leading to single amino acid substitutions. In vitro biochemical assays revealed that the protein encoded by the C796-deleted OGG1 completely lost its 8-oxoG glycosylase activity, and that the two single residue-substituted OGG1 proteins showed a significant reduction in the glycosylase activity. These results were consistent with the fact that nuclear extracts derived from a limited number of AD patients with OGG1 mutations exhibited greatly reduced 8-oxoG glycosylase activity compared with age-matched controls and AD patients without OGG1 alterations. Our findings suggest that defects in OGG1 may be important in the pathogenesis of AD in a significant fraction of AD patients and provide new insight into the molecular basis for the disease
Parametric investigation on an industrial electromagnetic continuous casting mould performance
This research aimed at conducting a quantitative investigation of process parameters on the magnetic field contribution in an electromagnetic continuous casting mould. The Taguchi method (4 factors and 3 factor value levels: L9 orthogonal array) was adopted to design matrix of the simulation runs and the analysis of variance was used to evaluate the contributions of each control factor. The simulations were conducted based on the finite element method and the numerical set-up was validated by the designed experiment. The results showed that the applied alternating current magnitude contributed most (76.64%) to the magnetic field level in the mould, compared to the other control factors. It was followed by the slit length (17.72%), the alternating current frequency (4.17%) and the slit width (1.57%)
Using the entomological inoculation rate to assess the impact of vector control on malaria parasite transmission and elimination
Prior studies have shown that annual entomological inoculation rates (EIRs) must be reduced to less than one to substantially reduce the prevalence of malaria infection. In this study, EIR values were used to quantify the impact of insecticide-treated bed nets (ITNs), indoor residual spraying (IRS), and source reduction (SR) on malaria transmission. The analysis of EIR was extended through determining whether available vector control tools can ultimately eradicate malaria. The analysis is based primarily on a review of all controlled studies that used ITN, IRS, and/or SR and reported their effects on the EIR. To compare EIRs between studies, the percent difference in EIR between the intervention and control groups was calculated. Eight vector control intervention studies that measured EIR were found: four ITN studies, one IRS study, one SR study, and two studies with separate ITN and IRS intervention groups. In both the Tanzania study and the Solomon Islands study, one community received ITNs and one received IRS. In the second year of the Tanzania study, EIR was 90% lower in the ITN community and 93% lower in the IRS community, relative to the community without intervention; the ITN and IRS effects were not significantly different. In contrast, in the Solomon Islands study, EIR was 94% lower in the ITN community and 56% lower in the IRS community. The one SR study, in Dar es Salaam, reported a lower EIR reduction (47%) than the ITN and IRS studies. All of these vector control interventions reduced EIR, but none reduced it to zero. These studies indicate that current vector control methods alone cannot ultimately eradicate malaria because no intervention sustained an annual EIR less than one. While researchers develop new tools, integrated vector management may make the greatest impact on malaria transmission. There are many gaps in the entomological malaria literature and recommendations for future research are provided
The key DNA-binding residues in the C-terminal domain of Mycobacterium tuberculosis DNA gyrase A subunit (GyrA)
As only the type II topoisomerase is capable of introducing negative supercoiling, DNA gyrase is involved in crucial cellular processes. Although the other domains of DNA gyrase are better understood, the mechanism of DNA binding by the C-terminal domain of the DNA gyrase A subunit (GyrA-CTD) is less clear. Here, we investigated the DNA-binding sites in the GyrA-CTD of Mycobacterium tuberculosis gyrase through site-directed mutagenesis. The results show that Y577, R691 and R745 are among the key DNA-binding residues in M.tuberculosis GyrA-CTD, and that the third blade of the GyrA-CTD is the main DNA-binding region in M.tuberculosis DNA gyrase. The substitutions of Y577A, D669A, R691A, R745A and G729W led to the loss of supercoiling and relaxation activities, although they had a little effect on the drug-dependent DNA cleavage and decatenation activities, and had no effect on the ATPase activity. Taken together, these results showed that the GyrA-CTD is essential to DNA gyrase of M.tuberculosis, and promote the idea that the M.tuberculosis GyrA-CTD is a new potential target for drug design. It is the first time that the DNA-binding sites in GyrA-CTD have been identified
The human side of hypoxia-inducible factor
When humans are exposed to hypoxia, systemic and intracellular changes operate together to minimise hypoxic injury and restore adequate oxygenation. Emerging evidence indicates that the hypoxia-inducible factor (HIF) family of transcription factors plays a central regulatory role in these homeostatic changes at both the systemic and cellular levels. HIF was discovered through its action as the transcriptional activator of erythropoietin, and has subsequently been found to control intracellular hypoxic responses throughout the body. HIF is primarily regulated by specific prolyl hydroxylase-domain enzymes (PHDs) that initiate its degradation via the von Hippel-Lindau tumour suppressor protein (VHL). The oxygen and iron dependency of PHD activity accounts for regulation of the pathway by both cellular oxygen and iron status. Recent studies conducted in patients with rare genetic diseases have begun to uncover the wider importance of the PHD-VHL-HIF axis in systems-level human biology. These studies indicate that, in addition to regulating erythropoiesis, the system plays an important role in cardiopulmonary regulation. This article reviews our current understanding of the importance of HIF in human systems-level physiology, and is modelled around the classic physiological response to high-altitude hypoxia
- …