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Abstract

This research aimed at conducting a quantitative investigation of process pa-

rameters on the magnetic field contribution in an electromagnetic continuous

casting mould. The Taguchi method (4 factors and 3 factor value levels: L9

orthogonal array) was adopted to design matrix of the simulation runs and the

analysis of variance was used to evaluate the contributions of each control factor.

The simulations were conducted based on the finite element method and the nu-

merical set-up was validated by the designed experiment. The results showed

that the applied alternating current magnitude contributed most (76.64%) to

the magnetic field level in the mould, compared to the other control factors.

It was followed by the slit length (17.72%), the alternating current frequency

(4.17%) and the slit width (1.57%).

Keywords: Electromagnetic continuous casting, Finite element method,

Taguchi method, Design of experiment, Analysis of variance

1. Introduction1

The electromagnetic continuous casting (EMCC) technique was first applied2

in the aluminium casting [1] and then the technique was adopted in steel making3
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process [2]. The depth of oscillation mark (OSM) on the billets was decreased4

from 0.45 (±0.15) mm to 0.15 (±0.05) mm [3, 4] for 0.08-0.1%C steel (round5

billets) by using EMCC technique. For the square billets, similar results were6

obtained: OSM decreased from 0.65 mm to 0.06 mm [5]. The improvement of7

billet surface quality simplified the following manufacturing process before the8

billets were rolled: the billets scalping process was avoided [6]. Therefore, the9

energy consumption was decreased.10

The basic principle of EMCC technique was discussed by professor Vivès [1]11

and the metallurgy effect of this technique depends on several factors: the12

electric control and mould structure parameters, for instance. Therefore, the13

investigation on these issues are critical in terms of enhancing the mould per-14

formance. Plenty of research has been carried out to focus on the effect of15

alternating current magnitude on the magnetic field level in the EMCC mould.16

The results unveiled that the magnetic field was enhanced as the current value17

was increased. A wide range of alternating current frequencies, from 60 Hz [7]18

to 2500 Hz [8], and further to 100 kHz [9] was investigated. The billet sur-19

face quality was improved for all the cases. However, for low frequency case,20

more fluctuations existed due to the electromagnetic stirring (EMS) effect. The21

EMCC mould (usually made of copper alloy) should have a slit-segment struc-22

ture (“cold-crucible” structure) [2], which is due to the skin effect of copper23

under the high frequency electromagnetic field. The slit allows the magnetic24

field to permeate to the mould centre and act on the liquid steel. Zhou et.al.25

experimentally studied the magnetic field distribution with different values of26

round mould slit width: 0.4 mm, 0.8 mm and 1.2 mm, respectively [10]. Numer-27

ically, Zhang et.al. investigated influence of the slit width (0.3 mm and 0.5 mm)28

on the magnetic field level in a round EMCC mould [11]. Both studies showed29

that the magnetic field increased as the slit width value was increased, how-30

ever, the uniformity of magnetic field along the circumferential direction may31

be worsen. For the slit length, similar results were obtained for both square [12]32

and rectangular [13] EMCC mould: the magnetic field level was enhanced as33

the slit length values were increased.34
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From the short literature review above, the research showed that the magnetic35

field level was in proportion to the applied alternating current magnitude, the36

slit width and length values, respectively. This raised a question:37

• what is the exact quantitative contribution of the main control parameters38

on the magnetic field in the EMCC mould?39

Little research has been conducted on this issue in the previous study. To answer40

the above question can help to figure out the contributions to the magnetic field41

of each parameters and therefore to find the most dominant one. The results42

could further help to design of experiments (DoE). That is the problem shall43

be tackled in the present research. The Taguchi method [14] basic principles44

are discussed in section 3.1.) was used to design the simulation matrix. The45

reason for this selection was because that Taguchi method which has been well46

validated in a wide field: e.g. for injection moulding process [15, 16] and evap-47

orative pattern casting process [17].48

The outline of the present paper is as follows. The configuration and numerical49

system are introduced Section 2.1 and 2.2. To obtain the precise simulation re-50

sults, an experimental validation for the numerical set-up is discussed in Section51

2.3. In Section 3, a detailed Taguchi analysis is conducted. Main conclusions52

are summarised in Section 4.53

2. Configuration and numerical system54

2.1. Configuration55

An industrial round EMCC mould supplied by a company, with an inner56

diameter 0.356 m was adopted in the present research. The mould had a slit-57

segment structure and 32 slits were distributed equally along circumference58

direction. Therefore, only 1/32 region (11.25o) of the EMCC mould system59

was investigated, as shown in Fig.1. The dimensions (in millimetre) of the steel60

simulator, the mould and induction coil, along with their relative locations were61

also shown in the figure. The x and y-axis are in the radial and axial (casting)62
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Figure 1: The configuration of EMCC mould system: the steel simulator, the mould and the

induction coil. 3D view (a), front view (b) and top view (c), respectively. I and II denote the

symmetric surfaces of the steel simulator and the mould, respectively. III and IV denote the

surfaces for the external applied alternating current in and out, respectively. Dimensions are

in millimetre.
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direction. I and II denote the symmetric surfaces of the steel simulator and the63

mould. III and IV denote the surfaces where applied alternating current flows64

in and out. The mould and induction coil were made of copper alloy and the65

steel simulator was made of stainless steel. The detailed material properties66

were listed in Tab.1.

Table 1: Material properties of the copper and steel.

Relative Conductivity Density

permeability - -

- S/m kg/m3

Copper [18] 1 4.5×107 8890

Steel [19] 1 7.14×105 7020

67

2.2. Numerical system68

The simulations were conducted by Ansoft Maxwell R© (version 16.0) based on69

finite element method. The simulation was based on the following assumptions70

[20]:71

1. all the electromagnetic fields pulsate with the same frequency;72

2. no moving objects in the simulation domain;73

3. all the materials properties are assumed to be linear.74

The control equation for the conducting region can be expressed as follows:

∇× (
1

σ + jωε0
∇×H) = jωμ0H[20], (1)

ω = 2× πf, (2)

where H, σ, ω and f are the magnetic flux intensity (in Ampere per meter),

the electric conductivity (in Siemens per meter), the angular frequency and the

alternating current frequency, respectively. H is calculated directly from the

applied source current. For the non-conduction region, H is computed from the

5



magnetic scalar potential:

∇ · (μ∇ψ) = 0[20], (3)

where ψ is magnetic scalar potential. The symmetry boundary condition (mag-

netic flux tangential) was applied on the surfaces I and II. For the induction

coil, an alternating current I was applied vertical to the symmetric planes (III

and IV):

I = Im cos(2π · f · t), (4)

where Im is the peak value of applied alternating current. Tab.2 shows that the

Table 2: The variation of energy error percentage and the total element number with the

solution iterations.

Solution iterations Energy error (%) Element number

1 3.67 79715

2 0.95 104041

3 0.57 135789

4 0.36 177221

5 0.25 231292

6 0.13 301861

7 0.07 393961

8 0.0447 514160

9 0.024 671026

10 0.014 875751

75

convergence was achieved after 8 iterations: the energy error value (0.0447%)76

at iteration 8 was smaller than the critical pre-set value 0.05%. The number77

of elements increased as the number of passes was increased. In the present78

simulation the number of elements was 875751. To obtain the precise results,79

the eddy current effect was also considered in electric conductive material, e.g.80

the mould. At least 4 elements were chosen within the skin depth. The meshes81

of steel simulator, the mould and induction coil are shown in Fig.2.82
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(a)

(b)

(c) (d) (e)

Figure 2: The mesh of the steel simulator, the mould and the induction coil. (a): 3D view,

(b) mesh of the steel simulator zone (within the red dashed line), (c) mesh of the mould zone

(within the blue dashed line), (d) mesh of the mould zone y − z view and (e) mesh of the

induction coil zone (within the green dashed line).
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2.3. Experiment validation83

To further validate the numerical system in section 2.2, an experiment aimed

at measuring the magnetic field was designed and conducted. Fig.3 shows the

mould system adopted in the experiment. The round industrial mould (with

MouldCoil

Slit

Segment

Cooling water tank

Cooling water pipe

Figure 3: The round EMCC mould system used in the experiment.

slit-segment structure), the induction coil, the cooling water pipe and the tank

were labelled, respectively. The mould was surrounded by a five-turn induction

coil. The five-turn induction coil ensures the meniscus of the molten steel and

the initial solidification region can be covered by the relatively strong magnetic

field in the casting experiment, therefore to achieve the “soft-contact” effect

[21, 22]. In the experiment, a solid stainless steel cylinder was used a simulator

of molten steel. In the experiment, the alternating current was supplied by an

ISP-200 kW supersonic frequency power (frequency range: 10-50 kHz). The

selected current frequency was 25 kHz in the experiment.

The small coil method [23, 24, 25] was used to capture the magnetic field in

the mould. A probe was first designed. The tip of probe was surrounded by

a number of small copper coils. The small copper coils were connected with a
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voltage meter. The basic principle for the method can be understood as follows.

The total magnetic flux, Φ, through the small coils is:

Φ = N · S ·B cos θ[26], (5)

where S, N and θ are the cross sectional area, the number of the small coil turns

and the angle between the magnetic flux line and the normal direction of the

coil, respectively. The magnetic flux density B can be expressed as:

B = Bm sin(2π · f · t), (6)

where Bm is the maximum magnitude of B. Therefore, Eq. (5) can be rewritten

as:

Φ = N · S ·Bm sin(2π · f · t) cos θ. (7)

Based on the Faraday induction law:

∮
E · dl = −dΦ

dt
[26]

= −N · S ·Bm · cos(2πft) · 2π · f · cos θ
= −Em · cos(2π · f · t), (8)

where

Em = N · S · Bm · 2π · f · cos θ. (9)

For Eq. (9), Em reaches the maximum value once θ = 0o. Therefore, Emax can

be expressed as:

Emax = N · S · Bm · 2π · f. (10)

The effective part of Em can be expressed as follows:

Eeff =
Emax√

2
. (11)

Therefore, Eq.(10) can be rewritten as:

Bm =

√
2Eeff

2π · f ·N · S . (12)

In the equation, Eeff can be displayed by the voltage meter and f is the fre-84

quency of applied a.c.. N and S are constants once the probe is designed. In85
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the present experiment N × S=1.712×10−4 m2. Therefore, the magnetic flux86

density can be calculated. The probe was placed between the outer surface of87

the steel simulator and the inner surface.88

Fig.4 shows the magnetic field distribution obtained from both simulation and89

experiment along the casting direction at the slit centre with a current density90

2.13×107 A/m2. The slit centre region was represented by a line between two

Steel simulator top
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Figure 4: Simulation and experiment results comparison of the magnetic flux density along

casting direction in the vicinity of the slit region. The current density on the induction coil is

2.13×107 A/m2. The alternating current frequency is 25 kHz.

91

points: P1 and P2, as shown in Fig.1 (b). The results showed that the magnetic92

field distribution follows the same trend along casting direction. The maximum93

magnitude of By appeared almost at the same location (relative to mould top):94

-148 mm for experiment and -141 mm for simulation, respectively. Furthermore,95

the maximum By magnitudes were close: 0.081 T for experiment and 0.08 T96

for simulation, respectively. Therefore, the numerical set-up for the simulation97

was validated.98
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3. Taguchi method analysis99

3.1. Basic principles of Taguchi method100

The Taguchi method is a method used to optimise the engineering process101

and to improve the product quality [14, 27]. The method should be conducted in102

three steps in general: the system design, the parameter design and the tolerance103

design, respectively [28]. The product design, e.g. the material selection of the104

product, and the process design, e.g. the processing sequences, are the tasks105

should be considered in the system design. The parameter design step of Taguchi106

method consists the following steps [29, 30].107

1. To identify the performance characteristics and select process parameters108

to be evaluated;109

2. to determine the number of levels for the process parameters;110

3. to select the appropriate orthogonal array (OA) and assignment of process111

parameters to the orthogonal array;112

4. to conduct the experiments based on the arrangement of the orthogonal113

array;114

5. to calculate the signal to noise (S/N) ratio;115

6. to analyse the experimental results using the S/N ratio and ANOVA;116

7. to select the optimal levels of process parameters;117

8. to verify the optimal process parameters through the confirmation exper-118

iment.119

For the present research, to answer the question raised in Section 1, the steps120

from 1 to 6 will be discussed in the following sections. The tolerance design121

is used to evaluate the tolerance around the optimized setting obtained by the122

parameter design.123

3.2. Mould performance measurement and process parameter selection124

The EMCC effect is achieved by the soft-contact behaviour between liquid125

metal and the mould [31]. The soft-contact effect is depended on the level126

11



of Lorentz force, generated by the interaction between induced current in the127

molten metal and the magnetic field in the mould. Therefore, the mould perfor-128

mance was measured by the magnetic field level in the vicinity of steel simulator129

top (slit region) in the mould. In more detail, the average value of y components130

(along casting direction) of the magnetic flux density, By, on the Lo1 to Lo7131

were selected as the performance characteristic. Lo1 to Lo7 were shown in Fig.1132

(b) and the detailed coordinates for Lo1 to Lo7 were listed in Tab.3.

Table 3: The coordinates for Lo1 to Lo7.

Coordinates Lo1 Lo2 Lo3 Lo4 Lo5 Lo6 Lo7

x, mm 170 170 170 170 170 170 170

y, mm 677.7 678.6 679.5 680.4 681.3 682.2 683.1

z, mm 0 0 0 0 0 0 0

133

Four process parameters were selected: the external applied A.C. value, the A.C.134

frequency, the slit width and length, respectively. They were named Factor A,135

B, C and D, respectively.136

3.3. Process parameter level selection137

For each control factor, three levels were selected. The details of control138

factors and their levels were summarized in Tab.4.

Table 4: The selected process parameter and their levels.

Control factor Level 1 Level 2 Level 3

Current density, A/m2 (Factor A) 6.07 × 106 1.33 × 107 2 × 107

Frequency, kHz (Factor B) 20 30 40

Slit width, mm (Factor C) 0.3 0.5 0.8

Slit length, mm (Factor D) 150 180 210

139
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3.4. Orthogonal array140

The L9 (34) orthogonal array (OA) and the combination parameters for the141

control factors are shown in Tab.5. Therefore, the detailed simulation conditions

Table 5: L9 orthogonal array.

Trial Factor A Factor B Factor C Factor D

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

142

for the 9 trials were summarized in Tab.6.143

3.5. Experiment conduction144

According to Tab.6, 9 trials of simulation were carried out and the results145

were obtained.146

3.6. Signal-noise ratio calculation147

The performance characteristic data (By) at Lo1 to Lo7, for all the simula-

tion trials, were listed in Tab.7. The larger-the-better of signal-noise ratio was

adopted because that the EMCC mould system was expected to response as

large as possible. For the larger the better (LB), S/N can be expressed:

(S/N)L = −10 · log( 1
n

n∑
i=1

1

y2i
)[14, 32, 33]. (13)

In the equation, y is the performance characteristic data (By) and n is the num-148

ber of the data collecting point (7 in the present research) in a single simulation149
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Table 6: The combination parameters for the effective factors.

Trial Current density Frequency Slit width Slit length

A/m2 kHz mm mm

Factor A Factor B Factor C Factor D

1 6.07 × 106 20 0.3 150

2 6.07 × 106 30 0.5 180

3 6.07 × 106 40 0.8 210

4 1.33 × 107 20 0.5 210

5 1.33 × 107 30 0.8 150

6 1.33 × 107 40 0.3 180

7 2 × 107 20 0.8 180

8 2 × 107 30 0.3 210

9 2 × 107 40 0.5 150

Table 7: By values at Lo1 to Lo7 for simulation trial 1 to 9.

Trial
By, mT

Lo1 Lo2 Lo3 Lo4 Lo5 Lo6 Lo7

1 17.40 17.28 17.12 16.96 16.78 16.64 16.51

2 27.94 27.67 27.39 27.04 26.63 26.20 25.75

3 35.20 34.82 34.42 33.95 33.43 32.88 32.25

4 66.98 66.12 65.23 64.33 63.42 62.49 61.47

5 42.30 42.03 41.72 41.40 41.06 40.67 40.25

6 47.24 46.73 46.18 45.53 44.90 44.27 43.62

7 91.68 90.68 89.63 88.51 87.25 86.00 84.74

8 89.54 88.42 87.23 86.00 84.68 83.31 81.89

9 54.86 54.47 54.15 53.82 53.19 52.50 51.84

14



trial. The averaged By, By, and the S/N ratios were calculated and summarized150

in Tab.8.

Table 8: Performance characteristic data By and S/N ratios.

Trial A B C D By, mT S/N

1 1 1 1 1 16.96 24.58

2 1 2 2 2 26.95 28.60

3 1 3 3 3 33.85 30.58

4 2 1 2 3 64.29 36.15

5 2 2 3 1 41.35 32.33

6 2 3 1 2 45.49 33.15

7 3 1 3 2 88.35 38.92

8 3 2 1 3 85.87 38.67

9 3 3 2 1 53.55 34.57

151

3.7. Signal-noise ratio analysis152

Therefore, based on the S/N ratios, the average S/N ratio in terms of the

different control factors, A to D, at different level, 1 to 3, were summarized in

Tab.9. The ranks are difference between the maximum value of S/N ratio and

Table 9: The response table of S/N for the current values, the current frequency, the slit width

and slit length, respectively. The bold value denotes the maximum S/N value.

Factors Level 1 Level 2 Level 3 Rank

Current. A (Factor A) 27.92 33.78 37.38 9.46

Frequency, kHz (Factor B) 33.22 33.20 32.77 0.43

Slit width, mm (Factor C) 32.13 33.02 33.94 1.81

Slit length, mm (Factor D) 30.49 33.56 35.04 4.55

the minimum ratio at different levels for each factor.

The S/N response diagram is showed in Fig.5. It showed that the best combina-

15
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(Factor B), slit width (Factor C) and slit length (Factor D), from left to right, respectively.

tion for the experiment parameters should be A3, B1, C3 and D3, respectively.

A further analysis was carried out by using analysis of variance (ANOVA)

method. The details of degree of freedom (DoF), sum of square (SS) factor,

variance and percentage contribution were calculated by the following methods

[16], respectively. For the total degree of freedom:

fT = N − 1, (14)

where N is the total number of the simulation trial. For each control factor:

fj = kj − 1, (15)

where j denotes Factor A, B, C and D, respectively. fj and kj denote the

freedom and the levels of factors A, B, C and D, respectively. The total sum of

square ST can be calculated by the follow equation:

ST =
9∑

i=1

(y2ia)−
1

9

9∑
i=1

(yia)
2, (16)

where yia is the By for the selected locations (Lo1 to Lo7) for the simulation

trial i, where i ∈ [1-9]. For each control factor:

Sj =
1

kj

kj∑
m=1

(y2ma)−
1

9

9∑
i=1

(yia)
2, (17)

where yma is By at m level for control factor j, where m ∈ [1-3]. The variance

and the percentage contribution of the control factors can be obtained by the

16



following equations:

Vj =
Sj

fj
(18)

and

Pj =
Sj

ST
× 100. (19)

The detailed data for DoF, SS, Variance and P were summarized in Tab.10.153

Fig.6 further shows the contribution percentage of each control factors on the

Table 10: The Analysis of Variance (ANOVA) table. DoF, SS, and P denote degrees of

freedom, sum of squares and the percentage sum of squares, respectively.

Source of variation DoF SS Variance P (%)

Current, A 2 3753.81 1876.91 76.64

Frequency, kHz 2 204.22 102.11 4.17

Slit width, mm 2 77.10 38.55 1.57

Slit length, mm 2 863.05 431.53 17.62

Total 8 4898.19 - 100

154

magnetic field level in the mould. The percentage contributions of the current,
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Figure 6: Contribution percentage on each control factors.
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155

the electric frequency, the slit width and the slit length are 76.64%, 4.17%, 1.57156

% and 17.62%, respectively. Unsurprisingly, the current has most dominant157

effect on the magnetic field in the mould and slit width has least influence,158

compared to the other three control factors.159

4. Conclusions160

A quantitative analysis, aimed at investigating the contributions of applied161

alternating current, the current frequency, the mould slit width and slit length162

to the magnetic field level in EMCC mould, was conducted. Therefore, the163

question raised in the section 1 was answered and the main conclusions were164

summarized as follows:165

• the numerical system was validated by the designed experiment. This166

indicated that the simulation results were reliable and be used to guide167

the further experimental design;168

• for all the selected control factors: the alternating current value was the169

most influential factor. It showed a contribution rate, to the magnetic field170

level, of 76.64%. The second most influential factor was the slit length at171

17.72%, followed by the current frequency at 4.17%. The least influential172

factor was slit width at 1.57%;173

• the Taguchi orthogonal array reduced the number of trials in experiment174

design. Based on the results obtained, more consideration should be given175

to slit length compared to the slit width and current frequency during the176

following EMCC mould design.177
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