125 research outputs found

    Unmanned Aerial Vehicle Navigation Using Wide-Field Optical Flow and Intertial Sensors

    Get PDF
    This paper offers a set of novel navigation techniques that rely on the use of inertial sensors and wide-field optical flow information. The aircraft ground velocity and attitude states are estimated with an Unscented Information Filter (UIF) and are evaluated with respect to two sets of experimental flight data collected from an Unmanned Aerial Vehicle (UAV). Two different formulations are proposed, a full state formulation including velocity and attitude and a simplified formulation which assumes that the lateral and vertical velocity of the aircraft are negligible. An additional state is also considered within each formulation to recover the image distance which can be measured using a laser rangefinder. The results demonstrate that the full state formulation is able to estimate the aircraft ground velocity to within 1.3 m/s of a GPS receiver solution used as reference "truth" and regulate attitude angles within 1.4 degrees standard deviation of error for both sets of flight data

    Autonomous Close Formation Flight Control with Fixed Wing and Quadrotor Test Beds

    Get PDF
    Autonomous formation flight is a key approach for reducing energy cost and managing traffic in future high density airspace. The use of Unmanned Aerial Vehicles (UAVs) has allowed low-budget and low-risk validation of autonomous formation flight concepts. This paper discusses the implementation and flight testing of nonlinear dynamic inversion (NLDI) controllers for close formation flight (CFF) using two distinct UAV platforms: a set of fixed wing aircraft named “Phastball” and a set of quadrotors named “NEO.” Experimental results show that autonomous CFF with approximately 5-wingspan separation is achievable with a pair of low-cost unmanned Phastball research aircraft. Simulations of the quadrotor flight also validate the design of the NLDI controller for the NEO quadrotors

    PET study of sphingosine-1-phosphate receptor 1 expression in response to S. aureus infection

    Get PDF
    Sphingosine-1-phosphate receptor 1 (S1PR1) plays a crucial role in infectious diseases. Targeting S1PR1 provides protection against pathogens, such as influenza viruses. This study is aimed at investigating S1PR1 in response to bacterial infection by assessing S1PR1 expression i

    The influence of different metal atoms on the performance of metalloporphyrin-based sensor reaction with propanol

    Get PDF
    Density functional theory (DFT) method was carried out to investigate the molecular interaction between metalloporphyrin-based sensor and propanol. The relative energies were used to determine the most stable state of metalloporphyrin and its complexes at three different spin states for further theoretical studies. The low-spin states were found to be the most stable states for cobalt porphyrin (CoP), tin porphyrin (Sn), and zinc porphyrin (ZnP) before exposure to propanol and CoP, SnP, ZnP, iron porphyrin (FeP), ruthenium porphyrin (RuP) after exposure to propanol. The intermediate-spin state was found to be the most stable states for the other metalloporphyrins and their complexes, except for manganese porphyrin (MnP) after exposure to propanol. The calculated binding energies were shown the following order for metalloporphyrin-based sensor-binding propanol: MnP>ZnP>CoP>RuP>SnP>FeP>AgP>CuP. This calculated result may be useful for the theoretical design of metalloporphyrin-based sensor for propanol determination and perhaps other analyte

    Perioperative dynamic alterations in peripheral regulatory T and B cells in patients with hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intratumoral and circulating regulatory T cells (Tregs) have been shown to be critical in the pathogenesis of hepatocellular carcinoma (HCC). However there is limited knowledge on the alterations of regulatory B cells (Bregs). We here investigated perioperative dynamic alterations of peripheral circulating Tregs and Bregs in HCC patients to reveal the relationship between regulatory lymphocytes and its clinical implications.</p> <p>Methods</p> <p>36 patients with HCC, 6 with chronic hepatitis B infection and 10 healthy donors were enrolled for this study. Frequencies of peripheral Tregs and Bregs were measured by flow cytometry with antibodies against CD4, CD25, CD127, CD19 and IL-10 before, and after radical surgery. Then, clinical informatics of HCC patients was achieved through Digital Evaluation Score System (DESS) for the assessment of disease severity. Finally, we analysed correlations between digitalized clinical features and kinetics of circulating regulatory lymphocytes.</p> <p>Results</p> <p>Level of circulating CD4<sup>+</sup>CD25<sup>+</sup>CD127<sup>- </sup>Tregs in HCC patients was significantly lower than that in healthy donors and patients with chronic hepatitis B infection before surgery, but was increased after surgery. Preoperative level of CD19<sup>+ </sup>IL-10<sup>+ </sup>Bregs in HCC patients was also significantly lower than the other groups. However it dramatically was elevated right after surgery and remained elevated compared to controls (about 7 days after surgery, <it>P </it>= 0.04). Frequency of circulating Tregs was correlated with circulating leukocytes, ferritin, and clinical features suggesting tumor aggressiveness including portal vein thrombosis, hepatic vein involvement and advanced clinical stages. Frequency of circulating Bregs was associated with Hepatitis B e Antigen (HBeAg) and Hepatitis B virus (HBV) DNA copy number. In addition, DESS was significantly and positively correlated with other staging systems.</p> <p>Conclusion</p> <p>Frequencies of peripheral Tregs and Bregs in HCC patients increased after surgery. These results suggest that a postoperative combination of therapies against Tregs and Bregs may be beneficial for better outcome of HCC patients after resection.</p
    corecore