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Abstract 

Transient impulses caused by local defects are critical for the fault detection of rotating machines. 

However, they are extremely weak and overwhelmed in the strong noise and harmonic components, 

making the transient features are very difficult to be extracted. This paper proposes an adaptive multi-

scale improved differential filter (AMIDIF) to enhance the identification of transient impulses for 

rotating machine fault diagnosis. In this scheme, firstly, the AMIDIF is performed to decompose the 

measured signal of rotating machine into a series of multi-scale improved differential filter (MIDIF) 

filtered signals. Subsequently, in view of the MIDIF filtered signals exhibit varying extents of validity in 

revealing fault features, a weighted reconstruction method using correlation analysis is proposed in which 

the weighted coefficients are counted and distributed to the corresponding MIDIF filtered signals to 

highlight the effective MIDIF filtered signals and weaken the invalid ones. Finally, the transient impulse 

components of rotating machinery are obtained by multiplying the weighted coefficients and the MIDIF 

filtered signals under different scales. Furthermore, the fault types of rotating machines are inferred from 

the fault defect frequencies in the envelope spectrum of the transient impulses. Simulation analysis and 

experimental studies are implemented to verify the performance of the AMIDIF compared with the state-

of-the-art methods including spectral kurtosis (SK), multi-scale average combination different 

morphological filter (ACDIF) and multi-scale morphology gradient product operation (MGPO). The 

results prove that the AMIDIF has excellent performance in extracting transient features for rotating 

machines fault diagnosis. 
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Nomenclature 

 

EMD   Empirical mode decomposition 

TQWT   Turntable Q-factor wavelet transform 

SR    Stochastic resonance 

VMD   Variational mode decomposition 

MO    Morphological operator 

MF    Morphological filter 

CMF   Combination morphological filter 

MG    Morphology gradient 

DIF    Difference filter 

IDIF    Improved differential filter 

MDIF   Multi-scale difference filter 

CO    Close-open 

OC    Open-close 

COOC   Difference between the CO and OC 

AVG    Average 

BTH    Black top hat 

MBTH   Multi-scale black top hat 

WTH   White top hat 

MWTH   Multi-scale white top hat 

AMMGDE   Average multi-scale morphological dilate-erode gradient 

WAMMG   Weighted average multi-scale morphological gradient 

GA    Genetic algorithm 

PSO    Particle swarm optimization 

FEF    Feature energy factor 

FDK    Frequency domain kurtosis 

TEK    Teager energy kurtosis 

SK    Spectral kurtosis 

ACDIF   Average combination different morphological filter 

MGPO   Morphology gradient product operation 

AMDIF   Adaptive multi-scale differential filter 

MIDIF   Multi-scale improved differential filter 

WMIDIF   Weighted multi-scale improved differential filter 

AMIDIF   Adaptive multi-scale improved differential filter 



1. Introduction 

Rotating machines are widely applied in the modern industries. After long-term operation, they may 

have unexpected failures, which will affect the performance and efficiency of other key components or 

even the entire mechanical transmission system [1-3]. It is critical to monitor the working status of 

rotating machines to prevent catastrophic failures and reduce severe economic losses. When a local fault 

occurs, the transient impulses will be produced through the contact between the defect and the mating 

surface. However, due to strong random noise and harmonic components interference, the transient 

impulses that reflect the failure mechanism cannot be separated effectively from the measurement signals 

[4-6]. Therefore, it is vital to eliminate random noise and harmonic components to obtain transient 

features from the measurement signal for rotating machines condition monitoring and fault detection. 

Currently, various advanced signal processing algorithms have been investigated to enhance the 

weak transient features in the measured signal, such as empirical mode decomposition (EMD), turntable 

Q-factor wavelet transform (TQWT), stochastic resonance (SR) and variational mode decomposition 

(VMD), etc. Although these algorithms can effectively diagnose the faults of rotating machines, there 

are still some limitations in their applications. For instance, the EMD can divide the measured signal into 

a certain number of intrinsic mode functions (IMFs), but it is governed by the stopping criterion and 

mode mixing [7-8]. The TQWT is an effective denoising algorithm, but it is affected by Q factor selection 

[9-10]. The SR has a good performance in obtaining sensitive fault features, but its system parameters 

will affect the denoising effect [11-12]. The VMD can eliminate the interference parts from random noise 

and harmonic components to obtain fault features, but it faces the problem of decomposition modes and 

balance parameters [13-14]. More importantly, these signal processing methods inevitably weaken useful 

signal details when eliminating background noise, which may affect the accuracy of fault detection. 

In contrast, morphological filter (MF) is an excellent nonlinear signal analysis approach that 

effectively modifies signal details by intersecting with structural element (SE) [15]. With this advantage, 

MF-based fault detection algorithms have been studied in the last decade [16-18]. For instance, Nikolaou 

et al. [16] utilized basic morphological operators to obtain impulses and successfully applied them to 

fault diagnosis. Wang et al. [17] designed a combination morphological filter (CMF) to highlight the 

impulsive components from the measured signal by eliminating the statistical deviations of the amplitude. 

Hu et al. [18] proposed an improved morphology gradient (MG), which constructs SE by using harmonic 

waveforms to extract impulse features from low signal-to-noise ratio (SNR) signals. However, these 

filters are single-scale morphological analysis methods and their SE scales are fixed, so they may lack 

integrity when extracting fault features. Aiming at solving the inadequacies of single-scale morphology 

analysis, a multi-scale morphological analysis method was proposed by Zhang and proved that it is 

superior to single-scale filters in rotating machines fault diagnosis [19]. Subsequently, Osman et al. [20] 

developed a multi-scale difference filter (DIF) and Hilbert-Huang transform to discover rolling bearing 

faults. Raj et al. [21] presented a hybrid algorithm based on multi-scale MG and fuzzy inference for 

incipient bearing fault detection. Li et al. [22] constructed an improved multi-scale differential filter 

(COOC), which combines the close-open (CO) filter and the open-close (OC) filter to detect rolling 

bearing faults. Since the above-mentioned multi-scale morphological filters can only extract positive or 

negative impulses in a signal at the same time, Dong et al. [23] proposed an average (AVG) filter based 

on the combination of the closing and opening to obtain bidirectional impulses of the vibration signals. 

However, the impulse amplitude of AVG is weakened [24]. In view of the multi-scale black top hat 

(MBTH) represents the difference between the original signal and opening operator and is mainly used 



to obtain negative impulses, while the multi-scale white top hat (MWTH) indicates the difference 

between the closing operator and original signal to extract positive impulses [19, 25], an adaptive multi-

scale improved differential filter (AMIDIF) according to the difference between the MBTH and MWTH 

is proposed to extract cyclic impulses for accurate rotating machinery diagnosis in this study. However, 

it is still a challenge task to effectively finalize the weighted coefficients in the AMIDIF to improve the 

accurateness of the transient impulse component extraction. 

To solve this issue, a large number of researches have been conducted until now. Li et al. [26] put 

forward the averaged multi-scale morphological dilate-erode gradient (AMMGDE) filter to detect gear 

failures, but the weighted coefficients of different SE scales are the identical in the AMMGDE filter. 

Subsequently, Li et al. [27] developed the weighted average multi-scale morphological gradient 

(WAMMG) to extract bearing fault features. In WAMMG, the large scale weighted coefficients can 

effectively suppress noise, while the detailed impulse information for indicating fault features is retained 

by the small scale weighted coefficients. Besides, the WAMMG method lacks adaptive abilities. Recently, 

Li et al. [28] and Deng et al. [29] constructed an adaptive weighted algorithm using the genetic algorithm 

(GA) and particle swarm optimization (PSO) to determine the weighted coefficients, respectively. Yan et 

al. [30] and Li et al. [31] put forward using the feature energy factor (FEF) and frequency domain kurtosis 

(FDK) to calculate the weighted coefficients, respectively. However, the former GA and PSO are affected 

by the fitness function, while the latter FEF and FDK only consider the fault signal in a single abnormal 

mode when determining the weighted coefficients and are not compared with the normal signal, so it is 

extremely difficult to highlight more useful fault components in the final output signal. This paper 

introduces a novel weighted coefficient algorithm based on the correlation coefficients between the 

vibration signals collected in abnormal circumstances and its MIDIF filtered signals, and between the 

MIDIF filtered signals and the vibration signal acquired in normal circumstances. This algorithm can 

extremely enhance the sensitive fault components and weaken the insensitive ones by removing the 

common information between the abnormal signal and normal signal. Based on the above considerations, 

the correlation coefficient method is exploited to optimize the weighted coefficients of the AMIDIF. 

To sum up, a novel AMIDIF based on the difference between the MBTH and MWTH is developed 

for rotating machines fault detection. This method can effectively enhance the transient impulses for 

extracting fault features from rotating machinery with strong random noise and harmonic components. 

The main contributions and innovations of the paper can be summarized into two aspects: (1) AMIDIF 

is able to obtain bidirectional impulses in the vibration signals to enhance the fault feature extraction and 

suppress background noise. (2) A weighted reconstruction algorithm based on correlation analysis is 

presented, in which the calculation of weight coefficients can effectively highlight the useful MIDIF 

filtered signals and reduce invalid ones. The performance of the AMIDIF is analyzed through a numerical 

simulation and experimental cases, and its effectiveness is validated by comparison with the existing 

algorithms. 

The paper is organized in 7 sections. After the introduction, Section 2 investigates the theoretical 

basis of the improved differential filter (IDIF), and the merits of IDIF over other morphological filters 

are investigated in accordance with the simulation analysis. Section 3 presents the AMIDIF scheme 

according to correlation analysis. In Section 4, the diagnostic process of the AMIDIF is thorough. And 

the AMIDIF is tested by a numerical simulation in Section 5. Two experimental case researches on 

support bearing with outer race fault and planetary gearbox with sun gear chipping are provided in 

Section 6. And the conclusions are drawn in Section 7. 

2. Improved differential filter 



2.1. IDIF 

The mathematical morphology (MM) was firstly presented as an image processing methodology by 

Matheron and Serra [32]. Assuming that the input sequence 𝑓(𝑛) and selected SE 𝑔(𝑚) are discrete 

signal over a domain of 𝐹 = (0,1, … , 𝑁 − 1)  and 𝐺 = (0,1, … ,𝑀 − 1) (𝑀 ≤ 𝑁) , respectively. The 

dilation and erosion are expressed as: 

(𝑓𝑔)(𝑛) = max[𝑓(𝑛 − 𝑚) + 𝑔(𝑚)],   𝑚 ∈ 0,1,⋯ ,𝑀 − 1               

(1) 

(𝑓𝑔)(𝑛) = min[𝑓(𝑛 + 𝑚) − 𝑔(𝑚)],   𝑚 ∈ 0,1,⋯ ,𝑀 − 1               

(2) 

where  and  are the dilation and erosion operations, respectively. The erosion operator can remove 

the positive impulses and smooth the negative ones. By comparison, the dilation operator can reduce the 

negative impulses and smooth the positive ones. The morphology gradient (MG) is expressed as the 

difference between the erosion and dilation: 

𝑀𝐺(𝑓(𝑛)) = (𝑓𝑔)(𝑛) − (𝑓𝑔)(𝑛)                     (3) 

The opening and closing operators can be generated by cascading the dilation and erosion operators, 

which can be formulated as: 

(𝑓𝑔)(𝑛) = (𝑓𝑔𝑔)(𝑛)                          (4) 

(𝑓𝑔)(𝑛) = (𝑓𝑔𝑔)(𝑛)                          (5) 

where  and  indicate the opening and closing operators, respectively. The opening operator reduces 

the positive impulses and preserves the negative ones, while the closing operator preserves the positive 

impulses and removes the negative ones. The difference filter (DIF) is expressed as the difference 

between the closing and opening: 

𝐷𝐼𝐹(𝑓(𝑛)) = (𝑓𝑔)(𝑛) − (𝑓𝑔)(𝑛) = [(𝑓𝑔)(𝑛) − 𝑓(𝑛)] + [𝑓(𝑛) − (𝑓𝑔)(𝑛)]  (6) 

where (𝑓𝑔)(𝑛) − 𝑓(𝑛) and 𝑓(𝑛) − (𝑓𝑔)(𝑛) represent the black top-hat (BTH) and white top-hat 

(WTH), respectively. The former is applied to extract negative impulses, while the latter is utilized to 

obtain positive impulses. Considering the presence of bidirectional impulses in the original signal, the 

improved differential filter (IDIF) based on the BTH and WTH is formulated as: 

𝐼𝐷𝐼𝐹(𝑓(𝑛)) = 𝑊𝑇𝐻(𝑛) − 𝐵𝑇𝐻(𝑛) = 2𝑓(𝑛) − (𝑓𝑔)(𝑛) − (𝑓𝑔)(𝑛)        (7) 

2.2. Simulation analysis 

A simulation signal 𝑥(𝑡) = sin (10π𝑡) + 𝑛(𝑡)  is analyzed and compared with the different 

morphological filters to evaluate the performance of IDIF. The sampling frequency of the 𝑥(𝑡) is 1024 

Hz and signal samples are 1024. And 𝑛(𝑡) denotes a certain number of positive and negative impulses 

(the interval of the same impulse is 400 sampling points) with amplitude of 1. Hereafter, the four basic 

morphological operators (MOs) using the flat SE with the length of L=10 are exploited to analyze the 



simulation signal as presented in Fig. 1. 

 

Fig. 1. Waveform of the simulation signal. 

 

Fig. 2. Processing results by the basic MOs: (a) dilation (b) erosion (c) closing (d) opening. 

Fig. 2 displays the processing results by the four basic MOs. However, the MOs can only extract 

positive or negative impulses, but cannot obtain bidirectional impulses. Subsequently, the different MFs 

(i.e. MG, AVG, DIF, COOC, BTH, WTH and IDIF) are exploited to handle the signal as illustrated in 

Fig. 1. The results of the different MFs are depicted in Fig. 3. It can be found that the MG, DIF and 

COOC can extract impulses, but all negative impulses are transformed into positive impulses. Although 

the AVG can obtain positive and negative impulses, the amplitude of the extracted impulses is weakened. 

The WTH can only extract positive impulses, while the BTH can extract negative impulses. And the BTH 

extracts a negative impulse that is converted into a positive impulse. The processing result of the IDIF is 

shown in Fig. 3(g), which is capable of obtaining the bidirectional impulses. Therefore, it is verified that 

the IDIF is more effective for extracting cyclic impulses. 



 

 

Fig. 3. Processing results by the MFs: (a) MG (b) AVG (c) DIF (d) COOC (e) BTH (f) WTH (g) 

IDIF. 

3. Adaptive multi-scale improved differential filter 

3.1. MIDIF 

To mine fault features more accurately, multi-scale methods have been carried out in Ref [33-35]. 

Suppose 𝑔 is a unit SE, and 𝜀 (𝜀 = 1,2, … , 𝑘) is the scale, the SE used in the scale 𝜀 can be expressed 



as: 

𝜀𝑔 = 𝑔𝑔⋯𝑔⏟        
𝜀−1 𝑡𝑖𝑚𝑒𝑠

= ((𝑔⋯𝑔)𝑔)𝑔⏟            
𝜀−1 𝑡𝑖𝑚𝑒𝑠

                (8) 

Multi-scale basic morphological operators can be given as: 

(𝑓𝜀𝑔)(𝑛) = 𝑓 (𝑔𝑔⋯𝑔)⏟        
𝜀−1 𝑡𝑖𝑚𝑒𝑠

                     (9) 

(𝑓𝜀𝑔)(𝑛) = 𝑓 (𝑔g⋯𝑔)⏟        
𝜀−1 𝑡𝑖𝑚𝑒𝑠

                     (10) 

(𝑓𝜀𝑔)(𝑛) = ((𝑓𝜀𝑔)𝜀𝑔)(𝑛)                      (11) 

(𝑓𝜀𝑔)(𝑛) = ((𝑓𝜀𝑔)𝜀𝑔)(𝑛)                      (12) 

Subsequently, the multi-scale black top-hat (MBTH) and multi-scale white top-hat (MWTH) are 

further defined as: 

𝑀𝐵𝑇𝐻(𝑓(𝑛)𝜀𝑔) = (𝑓𝜀𝑔)(𝑛) − 𝑓(𝑛)                   (13) 

𝑀𝑊𝑇𝐻(𝑓(𝑛)𝜀𝑔) = 𝑓(𝑛) − (𝑓𝜀𝑔)(𝑛)                   (14) 

Correspondingly, the MBTH is used to extract negative impulses, while the MWTH is applied to 

obtain positive impulses. Considering the presence of bidirectional impulses in the original signal, the 

multi-scale improved differential filter (MIDIF) can be expressed as: 

𝑀𝐼𝐷𝐼𝐹(𝑓(𝑛)𝜀𝑔) = 𝑀𝑊𝑇𝐻(𝑓(𝑛)𝜀𝑔) − 𝑀𝐵𝑇𝐻(𝑓(𝑛)𝜀𝑔) = 2𝑓(𝑛) − (𝑓𝜀𝑔)(𝑛) − (𝑓𝜀𝑔)(𝑛) (15) 

3.2. Adaptive weighted average 

Considering that large scales can suppress the background noise, but may destroy useful signal 

details, while small scales can smooth signal geometric characteristics, but may not effectively inhibit 

noise. Many researchers use the weighted average of MF as the final output [29-30]: 

𝑀𝐼𝐷𝐼𝐹(𝑓(𝑛)) = ∑ (𝜔𝜀
𝜀max
𝜀=1 ∙ 𝑀𝐼𝐷𝐼𝐹(𝑓(𝑛)𝜀𝑔))                (16) 

where 𝜔𝜀 is the weighted coefficients under different scales 𝜀(𝜀 = 1,2, … , 𝜀𝑚𝑎𝑥), which will influence 

the processing results of MIDIF. Consequently, it is necessary to develop a significant scheme to 

determine the weighted coefficients 𝜔𝜀 so that more useful fault components are highlighted in the final 

output signal. This paper presents a novel weighted coefficient algorithm via the correlation coefficients 

[36-37] to determine the weighted coefficients 𝜔𝜀 , and the specific procedure is summarized as follows: 

Step 1: Define the input signal 𝑓(𝑛) in SE as the normal circumstances signal, and 𝑓(𝑛) as the 

abnormal circumstances signal. 

Step 2: Calculate the correlation coefficient 𝑢𝜀 between the abnormal circumstances signal 𝑓(𝑛) 

and filtered signal 𝑀𝐼𝐷𝐼𝐹(𝑓(𝑛)𝜀𝑔) of each scale, which can be defined as: 

                       𝑢𝜀 =
∑ (𝑓̂(𝑛)−𝑓̂̅)(𝑀𝐼𝐷𝐼𝐹(𝑓̂(𝑛)𝜀𝑔)−𝑀𝐼𝐷𝐼𝐹(𝑓̂)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑁−1
𝑛=0

√∑ (𝑓̂(𝑛)−𝑓̂̅)2∑ (𝑀𝐼𝐷𝐼𝐹(𝑓̂(𝑛)𝜀𝑔)−𝑀𝐼𝐷𝐼𝐹(𝑓̂)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2𝑁−1

𝑛=0
𝑁−1
𝑛=0

                 (17) 

where 𝑓 ̅ and 𝑀𝐼𝐷𝐼𝐹(𝑓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ present the mean values of 𝑓(𝑛) and 𝑀𝐼𝐷𝐼𝐹(𝑓(𝑛)𝜀𝑔), respectively. 

Step 3: Calculate the correlation coefficient 𝜑𝜀  between the normal circumstances signal 𝑓(𝑛) 

and filtered signal 𝑀𝐼𝐷𝐼𝐹(𝑓(𝑛)𝜀𝑔) of each scale, which can be defined as: 

                       𝜑𝜀 =
∑ (𝑓(𝑛)−𝑓̅)(𝑀𝐼𝐷𝐼𝐹(𝑓(𝑛)𝜀𝑔)−𝑀𝐼𝐷𝐼𝐹(𝑓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑁−1
𝑛=0

√∑ (𝑓(𝑛)−𝑓̅)2∑ (𝑀𝐼𝐷𝐼𝐹(𝑓(𝑛)𝜀𝑔)−𝑀𝐼𝐷𝐼𝐹(𝑓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2𝑁−1
𝑛=0

𝑁−1
𝑛=0

                 (18) 

where 𝑓 ̅ and 𝑀𝐼𝐷𝐼𝐹(𝑓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ denote the mean values of 𝑓(𝑛) and 𝑀𝐼𝐷𝐼𝐹(𝑓(𝑛)𝜀𝑔), respectively. 



Step 4: Calculate the fault-related coefficient 
𝜀
: 


𝜀
= 𝑢𝜀 − 𝜑𝜀                               (19) 

Step 5: Calculate the weighted coefficients 𝜔𝜀 of each scale ε: 

 𝜔𝜀 = 
𝜀
/∑ 

𝜀

𝜀𝑚𝑎𝑥
𝜀=1                               (20) 

4. Diagnostic process of AMIDIF 

In this subsection, an AMIDIF method is developed for rotating machines fault detection. The 

specific diagnostic process is presented in Fig. 4, and the comprehensive contents are introduced as below: 

Step 1: Perform AMIDIF on the measurement signals of rotating machines to generate a series of 

MIDIF filtered signals. 

Step 2: Determine the scale range of the AMIDIF; the scales range from 1 to [𝑓𝑠/𝑓𝑜] − 2, with the 

increases of 1, where 𝑓𝑠  and 𝑓𝑜  indicate the sampling frequency and fault characteristic frequency, 

respectively. 

Step 3: Calculate the correlation coefficient between the vibration signal collected in abnormal 

circumstances and its MIDIF filtered signals, and between the MIDIF filtered signals and the vibration 

signal acquired in normal circumstances. 

Step 4: Calculate the fault-related coefficients by subtracting the correlation coefficients of the 

above two circumstances. 

Step 5: Calculate the weighted coefficients by normalizing the fault-related coefficients under 

different scales. 

Step 6: Acquire the AMIDIF filtered signal by multiplying the weighted coefficients and MIDIF 

filtered signals in abnormal circumstances. 

Step 7: Obtain the envelope spectrum of the AMIDIF filtered signal to identify the rotating 

machinery faults. 

 

Fig. 4. The flowchart of the AMIDIF method. 

5. Simulation validation 

5.1. Simulation model 

In this section, a numerical simulation signal is designed to elaborate the performance of the 

AMIDIF in extracting fault features. When a local fault occurs in a rolling bearing, its vibration form is 

constantly expressed as periodic impulses. However, the transient impulses are inevitably overwhelmed 

by random noise and harmonic components. To simulate the actual signal of rolling element bearing, the 



bearing fault model is defined as follows [38-39]: 

                              𝑥(𝑡) = 𝑠(𝑡) + 𝑏(𝑡) + ℎ(𝑡) + 𝑛(𝑡)                     (21) 

where 𝑠(𝑡) indicates the periodic impulse component caused by rolling element bearing defect, and its 

model is formulated as [40]: 

𝑠(𝑡) = ∑ 𝐵𝑗exp [−𝛽(𝑡 − 𝑗𝑇 − 𝜏𝑟)]sin (2π𝑓𝑐(𝑡 − 𝑗𝑇 − 𝜏𝑟))
𝐽
𝑗=1          (22) 

where 𝐽 indicates the number of periodic impulse, 𝐵𝑗  stands the amplitude of the 𝑗𝑡ℎ periodic impulse, 

𝑇  represents the impulse interval, 𝑓𝑐  is the resonant frequency, set to 600 Hz, 𝛽  stands the decay 

parameter, set to 110, and 𝜏𝑟 indicates a small random slippage variable of the rolling elements, which 

is often expressed as 1%~2% of the impulse interval 𝑇. The 𝑏(𝑡) represents random impulse aroused 

by external interference from the bearing housing, and its model can be defined as [41]: 

𝑏(𝑡) = ∑ 𝐴𝑗exp [−𝛼(𝑡 − 𝑗𝑇)]sin (2π𝑓𝑑(𝑡 − 𝑗𝑇))
𝑀
𝑗=1               (23) 

where 𝑀  and 𝐴𝑗  indicate the number of random impulses and the amplitude of the 𝑗𝑡ℎ  random 

impulse, 𝑓𝑑 denotes the resonant frequency, equal to 200 Hz, 𝛼 represents the decay parameter, set to 

35. The ℎ(𝑡) is employed to simulate harmonic components, and its model is formulated as: 

ℎ(𝑡) = 0.2 sin(2π𝑓1𝑡) + 0.1 sin (2π𝑓2𝑡)                  (24) 

where 𝑓1 and 𝑓2 are set to 20 Hz and 50 Hz, respectively. Meanwhile, the sampling frequency is 2048 

Hz and data length is 8192, 𝑓𝑜 = 1 𝑇⁄  represents the fault defect frequency, equal to 32 Hz. The 𝑛(𝑡) 

is Gaussian white noise. Fig. 5 presents the periodic impulse, random impulse, Gaussian white noise, 

harmonic component and composite signal, respectively. Fig. 6(a) and Fig. 6(b) describe the spectrum 

and envelope spectrum of the composite signal at a signal-to-noise ratio (SNR) of -5 dB. From the 

frequency spectrum, the two interference frequencies (𝑓1 and 𝑓2) are presented clearly, but the fault 

defect frequency 𝑓𝑜 and its harmonics (i.e. 2𝑓𝑜, 3𝑓𝑜, 4𝑓𝑜, 5𝑓𝑜 and 6𝑓𝑜) cannot be observed. As depicted 

in Fig. 6(c), only the first two fault defect frequencies (i.e. 𝑓𝑜 and 2𝑓𝑜) can be found, the higher order 

harmonics (i.e. 3𝑓𝑜, 4𝑓𝑜, 5𝑓𝑜 and 6𝑓𝑜) cannot be identified. 

  

 

Fig. 5. (a) periodic impulse (b) random impulse (c) Gaussian white noise (d) harmonic component (e) 

composite signal. 



 

 

Fig. 6. Simulated bearing signal: (a) spectrum (b) envelope spectrum with central frequency of 600 Hz 

and a bandwidth of 100Hz. 

To accurately extract the fault defect frequency 𝑓𝑜 and its harmonics, the AMIDIF is exploited to 

handle the composite signal as illustrated in Fig. 5(e). Firstly, the composite signal is decomposed into a 

series of MIDIFs using the AMIDIF. The correlation coefficients between the composite signal collected 

under abnormal or normal circumstances and the MIDIFs under different scales are calculated. 

Subsequently, the fault-related coefficients are calculated by the difference between the abnormal signal 

and normal signal to remove common information to highlight the fault component of the simulated 

bearing. To demonstrate the advantages of the AMIDIF, an adaptive multi-scale difference filter (AMDIF) 

[18] based on correlation coefficient is considered for the simulation signal. Finally, the weighted 

coefficients of the AMIDIF and AMDIF are calculated by normalizing the fault-related coefficients of 

different scales. The weighted coefficient with different scales of SE is displayed in Fig. 7. The results 

of the AMIDIF and AMDIF are presented in Fig. 8 and Fig. 9, respectively. As can be clearly observed 

from Fig. 8, the fault defect frequency 𝑓𝑜  and its harmonics (i.e. 2𝑓𝑜, 3𝑓𝑜, 4𝑓𝑜, 5𝑓𝑜 𝑎𝑛𝑑 6𝑓𝑜 ) of the 

simulated signal are obvious. In contrast, the first three fault characteristic frequencies (i.e. 𝑓𝑜,

2𝑓𝑜 𝑎𝑛𝑑 3𝑓𝑜 ) can be identified, and there are still abundant interference frequencies in the low 

frequency band in Fig. 9. This means that the AMIDIF can more efficiently obtain the fault defect 

frequencies than the AMDIF. 

 



Fig. 7. The weighted coefficient with different scales of SE based on correlation coefficient. 

 

Fig. 8. Processing results of the simulated bearing signal by the AMIDIF: (a) waveform (b) envelope 

spectrum. 

 

Fig. 9. Processing results of the simulated bearing signal by the AMDIF: (a) waveform (b) envelope 

spectrum. 

5.2. Comparison with multi-scale difference morphology filters 

To demonstrate the advantages of the AMIDIF, the multi-scale average combination different 



morphological filter (ACDIF) [42] and multi-scale morphology gradient product operation (MGPO) [43] 

methods are utilized to handle the composite signals presented in Fig. 5(e). According to the literature 

[42], the multi-scale ACDIF is composed of an average weighted combination of two basic cascade 

operations, which apply a flat SE to extract impulses from background noise and interference components. 

The weighted coefficient with different scales of SE based on Teager energy kurtosis (TEK) is depicted 

in Fig. 10. The multi-scale ACDIF filtered signal is obtained by multiplying the weighted coefficients 

and ACDIF signals under different scales, and corresponding envelope spectrum are presented in Fig. 11. 

Only the fault defect frequencies  𝑓𝑜 can be found from the Fig. 11(b), the higher order harmonics 

(i.e. 2𝑓𝑜 , 3𝑓𝑜, 4𝑓𝑜, 5𝑓𝑜 and 6𝑓𝑜) cannot be identified and interference harmonics are doped in the low 

frequency band. According to the literature [43], the multi-scale MGPO is formed by the product of two 

gradient operations (MG and COOC), which uses a flat SE to extract impulses of composite signal. The 

weighted coefficient with different scales of SE based on feature energy factor (FEF) is depicted in Fig. 

12. The multi-scale MGPO filtered signal is calculated by multiplying the weighted coefficients and 

MGPO signals under different scales, and its envelope spectrum are depicted in Fig. 13. Although the 

fault defect frequency 𝑓𝑜 and its harmonics (i.e. 2𝑓𝑜 and 3𝑓𝑜) can be identified, there are still some 

harmonic interference frequencies as plotted in Fig. 13(b). Thus, the simulation results reveal that the 

AMIDIF is superior to the ACDIF and MGPO. 

 

Fig. 10. The weighted coefficient with different scales of SE based on TEK. 

 



Fig. 11. Processing results of the simulated bearing signal by the ACDIF: (a) waveform (b) envelope 

spectrum. 

 

Fig. 12. The weighted coefficient with different scales of SE based on FEF. 

 

Fig. 13. Processing results of the simulated bearing signal by the MGPO: (a) waveform (b) envelope 

spectrum. 

5.3. Comparison with the SK and MOMEDA algorithm 

The spectral kurtosis (SK) put forward by Antoni [44] is the benchmark algorithm for fault detection 

of rotating machines, so FK is further utilized to analyze the simulation signal. The detection results of 

the SK are depicted in Fig. 14. It can be noticed that the bandwidth and central frequency of the band 

pass filter are 341.3 Hz and 170.67 Hz in Fig. 14(a). The envelope and squared envelope spectrum of the 

filtered signal by the SK are drawn in Fig. 14(b) and (c). From Fig. 14(c), the fault defect frequencies 

(i.e.  𝑓𝑜, 2𝑓𝑜, 3𝑓𝑜, 4𝑓𝑜, 5𝑓𝑜 and 6𝑓𝑜 ) are identified, but the background noise and the interference 

frequency components are much larger than those in Fig. 8. The multipoint optimal minimum entropy 

deconvolution adjusted (MOMEDA) is a new algorithm presented recently in Ref. [45], which has been 

successfully used for rotating machinery fault diagnosis. Therefore, the above-mentioned simulation 

signal is analyzed using the MOMEDA for comparison. In the MOMEDA algorithm, the window 



function 𝑤 is a rectangular window whose length is set to 3 and the filter length of 𝐿 is set to 50 [46-

47]. The corresponding diagnosis results obtained using the MOMEDA are depicted in Fig. 15. As 

depicted in Fig. 15(b), the fault defect frequency 𝑓𝑜 and its harmonics (i.e. 2𝑓𝑜, 3𝑓𝑜, 4𝑓𝑜, 5𝑓𝑜 and 6𝑓𝑜 ) 

are identified. To further compare the performance of the five methods (AMIDIF, ACDIF, MGPO, SK 

and MOMEDA), the signal-to-noise ratio (SNR) and CPU running time are considered in this study. The 

Intel Core i7 8550U 1.99 GHz CPU with 16.00 GB RAM is used to carry out the simulation. The SNR 

is expressed as follows [48]: 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
∑ 𝑥2(𝑖)𝑁
𝑖=1

∑ (𝑥(𝑖)−𝑥(𝑖))2𝑁
𝑖=1

)                        (25) 

where 𝑥(𝑖) (𝑖 = 1,2,⋯ ,𝑁)  presents the raw signal and 𝑥̂(𝑖)   indicates the filtered signal, 

respectively. The contrast results of the five methods (AMIDIF, ACDIF, MGPO, SK and MOMEDA) are 

shown in Table 1. It can be found that the AMIDIF has the maximum SNR, which indicates that it has a 

good denoising effect. In addition, the AMIDIF has less CPU running time than the ACDIF and MGPO, 

but more than the SK and MOMEDA. Here are some explanations about the computational efficiency of 

the AMIDIF is lower than the SK and MOMEDA. Firstly, the SE scale of the AMIDIF is too large, which 

will directly increase the weighted coefficients under different scales to increase the number of cycles. 

Secondly, the weighted coefficients of the AMIDIF need to be performed in two modes, while the SK 

and MOMEDA algorithms only require a single abnormal mode and only cycle once when processing 

the signals. Consequently, the analysis results illustrate that the AMIDIF is more capable of accurately 

extracting impulse features than other four methods in this case. 

  

Fig. 14. Processing results of the simulated bearing signal by the SK: (a) kurtogram (b) envelope (c) 

squared envelope spectrum. 



 

Fig. 15. Processing results of the simulated bearing signal by the MOMEDA: (a) waveform (b) 

envelope spectrum. 

 

 

 

Table 1. The contrast results between the AMIDIF and other four algorithms. 

Algorithms SNR CPU running time (s) 

AMIDIF 0.221 4.976 

ACDIF -12.999 9.828 

MGPO -4.690 9.469 

SK -0.277 3.510 

MOMEDA -0.015 1.747 

A good transient impulse extraction algorithm cannot be affected by random noise. Thus, the 

performance of the AMIDIF under different noise scales is studied. The fault defect index is an 

evaluation method that has been proven to be efficient in extracting fault features [49]. Given this, 

the fault defect index is utilized to assess the performance of the AMIDIF under different noise 

scales in this study. For a given fault defect frequency 𝑓, the fault defect index 𝛼̅ can be defined 

as follows: 

{
 

 𝛼̅ =
𝛼(𝑓) + 𝛼(2𝑓) + 𝛼(3𝑓)

3

𝛼(𝑓) =
𝐴(𝑓)

mean(𝐴(𝑓 − 10),𝐴(𝑓 + 10))

 (26) 

where 𝐴(𝑓) indicates the envelope spectrum amplitude of the fault defect frequency. The fault 

defect index of the AMIDIF, SK, MOMEDA and narrowband-based envelope spectrum under 

different noise scales is exhibited in Fig. 16. It can be found that the AMIDIF has stronger fault 

diagnosis capability than the other three algorithms under different noise scales. 



 

Fig. 16. Fault defect index of the four algorithms under different noise scales. 

5.4. Effect of the weighted coefficients on the AMIDIF 

To illustrate the effect of the weighted coefficients on the AMIDIF, the traditional multi-scale 

improved differential filter (MIDIF) and the weighted multi-scale improved differential filter (WMIDIF) 

are exploited to handle the same signal depicted in Fig. 5(e). The WMIDIF filtered signal is calculated 

by directly multiplying the weighted coefficients and the MIDIF filtered signals under different scales, 

as illustrated in Fig. 17. As can be found from Fig. 17(b), the fault defect frequency 𝑓𝑜 and its harmonics 

(i.e. 2𝑓𝑜, 3𝑓𝑜, 4𝑓𝑜, 5𝑓𝑜 𝑎𝑛𝑑 6𝑓𝑜 ) can be distinctly identified, but the interference frequencies are still 

around the higher order harmonics. The traditional MIDIF is formed by directly averaging all scales IDIF 

filtered signals. The results of the traditional MIDIF are presented in Fig. 18. Although the fault defect 

frequency 𝑓𝑜 and its harmonics (i.e. 2𝑓𝑜, 3𝑓 𝑜, 4𝑓𝑜, 5𝑓𝑜 𝑎𝑛𝑑 6𝑓 𝑜) can be observed, the amplitude of the 

interference frequencies is distinctly higher than the amplitude of the fault defect frequencies. By contrast, 

it can be concluded that the weighted coefficient obtained by the correlation coefficient method can better 

highlight the useful fault component of the measured signal. In conclusion, by the comprehensive 

comparative study of the simulated signals, the results prove that the AMIDIF based on correlation 

coefficient is more suitable and effective in fault diagnosis. 



 

Fig. 17. Processing results of the simulated bearing signal by the WMIDIF: (a) waveform (b) envelope 

spectrum. 

 

Fig. 18. Processing results of the simulated bearing signal by the MIDIF: (a) waveform (b) envelope 

spectrum. 

6. Experimental verification 

To verify the performance of the AMIDIF in fault diagnosis of rotating machines, the experimental 

cases from rolling element bearing and planetary gearbox are analyzed. Moreover, the effectiveness of 



the AMIDIF is contrasted with two multi-scale difference morphology filters (i.e. ACDIF and MGPO), 

SK and MOMEDA algorithms. 

6.1. Case 1: rolling element bearing fault diagnosis 

6.1.1. Test setup and data collection 

The experimental data is obtained from the bearing test platform as displayed in Fig. 19. It comprises 

an induction motor, three couplings, two bearing houses and a DC generator. The accelerometer sensor 

was erected in the bearing housing. An artificial fault (depth 0.3 mm and width 0.1 mm) is emerged on 

the outer race of the support bearing. The sampling frequency and data length were 13,529 Hz and 

100,000 points, respectively. Fig. 20 illustrates the support bearing outer race with small defect. The 

geometric dimensions and fault defect frequencies of support bearing are listed in Table 2 and Table 3, 

respectively. 

 

Fig. 19. The bearing test platform. 

 

Fig. 20. The support bearing outer race with small defect. 

 

 

Table 2. Geometric dimensions of the support bearing. 

Parameter  Value 

Ball diameter (mm) 14 

Pitch diameter (mm) 59 



Ball numbers 9 

Contact angle 0° 

Table 3. Fault defect frequencies of the support bearing. 

Frequency column Value (Hz) 

Inner race 𝑓𝑖 135.1 

Outer race 𝑓𝑜 83.3 

Rolling element 𝑓𝑏 48.3 

Fundamental cage 𝑓𝑐 9.3 

6.1.2. Results and analysis 

The waveform, spectrum and envelope spectrum of the vibration signal of the support bearing with 

the outer race fault are depicted in Fig. 21. From the frequency spectrum, the fault defect frequency 𝑓𝑜 

and its harmonics cannot be recognized. As depicted in Fig. 21(c), the fault defect frequency 𝑓𝑜  is 

recognized, but its higher order harmonics (i.e. 2𝑓𝑜 and 3𝑓𝑜 ) are mixed by background noise and 

interference harmonics. 

 

 

Fig. 21. Vibration signal of the support bearing: (a) waveform (b) spectrum (c) envelope spectrum with 

central frequency of 1800 Hz and a bandwidth of 400 Hz. 

To extract the fault defect frequency 𝑓𝑜 and its harmonics, the AMIDIF is exploited to analyze the 



support bearing fault signal. To begin with, the faulty bearing signal is decomposed into a certain number 

of MIDIFs through the AMIDIF. The correlation coefficient 𝑢𝜀 between the MIDIFs and faulty bearing 

signal, and correlation coefficient 𝜑𝜀 between the MIDIFs and normal bearing signal are calculated. 

Afterward, the fault-related coefficients are calculated by the difference between 𝑢𝜀 and 𝜑𝜀 to remove 

common information to highlight the useful components of the faulty bearing. At last, the weighted 

coefficients of the AMIDIF are calculated by normalizing the fault-related coefficients of different scales. 

The weighted coefficients with different scales of SE are depicted in Fig. 22. The AMIDIF filtered signal 

is obtained by multiplying the weighted coefficients and MIDIFs under different scales and envelope 

spectrum are presented in Fig. 23. As displayed in the envelope spectrum, the three main spectrum lines 

of the support bearing outer race fault are recognized. 

 

Fig. 22. The weighted coefficient with different scales of SE based on correlation coefficient. 

 

Fig. 23. Processing results of the support bearing by the AMIDIF: (a) waveform (b) envelope spectrum. 

For comparison, the multi-scale ACDIF and MGPO methods are utilized to analyze the waveform 

of Fig. 21(a). The processing results are depicted in Fig. 24 and Fig. 25. As displayed in Fig. 24(b) and 

Fig. 25(b), only the fault defect frequency 𝑓𝑜  can be recognized, but the higher order harmonics 

(i.e. 2𝑓𝑜 and 3𝑓𝑜) cannot be identified. Moreover, there are random noise and irrelevant interferences 

in the low frequencies band. In addition, the same support bearing fault signal is processed by the SK 

and MOMEDA algorithms, and the obtained results are illustrated in Fig. 26 and Fig. 27. As discovered 



in Fig. 26(a), the bandwidth and central frequency of the band pass filter are 422.8 Hz and 1479.7 Hz, 

respectively. Fig. 26(b) and (c) illustrate envelope and corresponding squared envelope spectrum of the 

SK. As depicted in Fig. 26(c), the fault defect frequencies (i.e. 𝑓𝑜, 2𝑓𝑜 and 3𝑓𝑜) are identified, but the 

background noise and some interference frequency components are much larger than the processing 

result presented as Fig. 23(b). The corresponding processing results obtained using the MOMEDA 

algorithm with the same parameters as the simulation signals are illustrated in Fig. 27. As depicted in 

Fig. 27(b), the fault defect frequency 𝑓𝑜  can be recognized, but the higher order spectrum lines 

(i.e. 2𝑓𝑜 and 3𝑓𝑜) of the faulty bearing cannot be identified. To further evaluate the performance of the 

five algorithms (AMIDIF, ACDIF, MGPO, SK and MOMEDA), the SNR and CPU running time are 

applied. The contrast results of the five algorithms are illustrated in Table 4. It can be found that the SNR 

of AMIDIF is higher than the multi-scale difference morphology filters (ACDIF and MGPO), SK and 

MOMEDA. Although the calculation efficiencies of the SK and MOMEDA are higher than that of the 

AMIDIF, they cannot accurately extract the main spectrum lines of the faulty bearing. Therefore, the 

comparison results indicate that the AMIDIF outperforms the other four methods for the support bearing 

fault detection. 

 

Fig. 24. Processing results of the support bearing by the MGPO: (a) waveform (b) envelope 

spectrum. 



 

Fig. 25. Processing results of the support bearing by the ACDIF: (a) waveform (b) envelope 

spectrum. 

  

Fig. 26. Processing results of the support bearing by the SK: (a) kurtogram (b) envelope (c) squared 

envelope spectrum. 



 

Fig. 27. Processing results of the support bearing by the MOMEDA: (a) waveform (b) envelope 

spectrum. 

Table 4. The contrast results between the AMIDIF and other four algorithms. 

Algorithms SNR CPU running time (s) 

AMIDIF 1.177 125.347 

ACDIF -11.549 363.358 

MGPO -0.381 261.458 

SK -0.004 9.423 

MOMEDA -8.428 4.352 

For further comparison study, the support bearing vibration signals are collected under variable 

conditions from 0%, 50% and 100% loads to monitor the influence of working conditions on fault 

diagnosis. In addition, the fault defect index is applied to assess the performance of AMIDIF in obtaining 

fault features under variable conditions in this study. Fig. 28 illustrates the diagnosis results of support 

bearing under variable conditions by using five algorithms. It can be observed from Fig. 28, the AMIDIF 

has stronger fault feature extraction capabilities compared with the other four algorithms under any loads. 



 

Fig. 28. Fault defect index of five algorithms under variable conditions. 

6.2. Case 2: planetary gearbox fault diagnosis 

6.2.1. Test setup and data collection 

The planetary gearbox test rig is displayed in Fig. 29. It primarily involves an induction motor, a 

helical gearbox, a planetary gearbox, two flexible type couplings, and a DC generator. In addition, the 

required speed and load are controlled through a variable speed controller, which sends the require values 

to the motor and the DC generator. The vibration signal of the planetary gearbox was measured via an 

accelerometer fixed on top of the planetary gearbox. The sampling frequency and data length were 

100,000 Hz and 3000,000 points, respectively. Fig. 30 illustrates the sun gear chipping. The geometric 

dimensions and fault defect frequencies of planetary gearbox are listed in Table 5 and Table 6, 

respectively. 

 

Fig. 29. The planetary gearbox test rig. 



 

Fig. 30. The sun gear chipping. 

Table 5. Geometric dimensions of the planetary gearbox. 

Parameter Number of teeth 

Sun gear 10 

Planet gear (number) 26(3) 

Ring gear 62 

Carrier - 

Table 6. Fault defect frequencies of the planetary gearbox. 

  
Rotational 

frequency (Hz) 

Meshing frequency 

(Hz) 

Fault characteristic 

frequency (Hz) 

Planetary gearbox 

Sun gear 9.36  24.18 

Planet gear  3.60 80.61 9.80 

Ring gear -  3.90 

Carrier 1.30 - - 

6.2.2. Results and analysis 

The waveform, spectrum and envelope spectrum of the vibration signal of the planetary gearbox 

with sun gear chipping are displayed in Fig. 31. From the frequency spectrum, the fault defect frequencies 

of the sun gear chipping cannot be recognized. As displayed in Fig. 31(c), the sun gear fault defect 

frequencies (𝑓𝑠𝑓 and 2𝑓𝑠𝑓) and their combinations 𝑓𝑠𝑓±𝑓𝑟𝑠 and 2𝑓𝑠𝑓−𝑓𝑟𝑠 can be recognized, but the 

sun gear rotational frequency 𝑓𝑟𝑠 and their combinations 2𝑓𝑠𝑓+𝑓𝑟𝑠 cannot be identified. 

 



 

 

Fig. 31. Vibration signal of the sun gear chipping: (a) waveform (b) spectrum (c) envelope spectrum 

with central frequency of 80 Hz and a bandwidth of 40Hz. 

To extract the fault defect frequency and its harmonics, the AMIDIF is utilized to analyze the sun 

gear chipping signal. First of all, the sun gear chipping vibration signals are decomposed into a series of 

MIDIFs using the AMIDIF. The correlation coefficient 𝑢𝜀 between the sun gear chipping signal and its 

MIDIFs, and correlation coefficient 𝜑𝜀 between the MIDIFs and normal sun gear signal are calculated. 

Subsequently, the fault-related coefficients are calculated by the difference between 𝑢𝜀  and 𝜑𝜀  to 

obtain the useful components of the sun gear chipping. Finally, the weighted coefficients of AMIDIF are 

calculated by normalizing the fault-related coefficients of different scales. Due to the fault defect 

frequency of the sun gear chipping is very small and the sampling frequency is too large, the SE scale of 

the AMIDIF will be too large. Therefore, to simplify the calculation, the SE scale of the AMIDIF is 

limited to 1-200. The weighted coefficients with different scales of SE are depicted in Fig 32. The 

AMIDIF filtered signal is obtained by multiplying the weighted coefficients and MIDIFs under different 

scales and envelope spectrum are drawn in Fig. 33. As depicted in the envelope spectrum, the sun gear 

rotational frequency 𝑓𝑟𝑠 , sun gear defect frequency 𝑓𝑠𝑓  and their combinations 𝑓𝑠𝑓±𝑓𝑟𝑠  can be 

correctly recognized. 



 

Fig. 32. The weighted coefficient with different scales of SE based on correlation coefficient. 

 

Fig. 33. Processing results of the sun gear chipping by the AMIDIF: (a) waveform (b) envelope 

spectrum. 

As comparisons, the multi-scale difference morphology filters (ACDIF and MGPO) are used to 

analyze the waveform of Fig. 31(a). The MGPO filtered results with different scales of SE based on FEF 

and envelope spectrum are depicted in Fig. 34. Only the sun gear fault defect frequencies 𝑓𝑠𝑓 and its 

harmonics and their combinations 𝑓𝑠𝑓+𝑓𝑟𝑠 and 2𝑓𝑠𝑓−𝑓𝑟𝑠 can be recognized. The multi-scale ACDIF 

filtered results with different scales of SE based on TEK and corresponding envelope spectrum are drawn 

in Fig. 35. It can be found that the sun gear rotational frequency 𝑓𝑟𝑠, sun gear defect frequency 𝑓𝑠𝑓 and 

its harmonics and their combinations 𝑓𝑠𝑓−𝑓𝑟𝑠 can be observed, but the their combinations 𝑓𝑠𝑓+𝑓𝑟𝑠 and 

2𝑓𝑠𝑓±𝑓𝑟𝑠  cannot be identified. Similarly, the sun gear chipping signal is handled by the SK and 

MOMEDA algorithms. As discovered in Fig. 36(a), the bandwidth and central frequency of the band pass 

filter are 250 Hz and 1625 Hz, respectively. The envelope and squared envelope spectrum of the filtered 

signal using SK are illustrated in Fig. 36(b) and (c). As depicted in Fig. 36(c), the sun gear rotational 

frequency 𝑓𝑟𝑠, sun gear fault defect frequencies 𝑓𝑠𝑓 and its harmonics and their combinations 𝑓𝑠𝑓+𝑓𝑟𝑠 

and 2𝑓𝑠𝑓−𝑓𝑟𝑠 can be found, and there are some interference frequency components. The processing 



results obtained using the MOMEDA algorithms are depicted in Fig. 37. As drawn in Fig. 37(b), the sun 

gear rotational frequency 𝑓𝑟𝑠, sun gear defect frequency 𝑓𝑠𝑓 and its harmonics and their combinations 

𝑓𝑠𝑓−𝑓𝑟𝑠 and 2𝑓𝑠𝑓−𝑓𝑟𝑠 can be observed, but the their combinations 2𝑓𝑠𝑓+𝑓𝑟𝑠 and 𝑓𝑠𝑓+𝑓𝑟𝑠 cannot be 

identified. The SNR and CPU running time of the five methods (AMIDIF, ACDIF, MGPO, SK and 

MOMEDA) are shown in Table 7. It can be found that the AMIDIF is less efficient than the SK and 

MOMEDA algorithms, but the fault feature extraction capability of the AMIDIF is higher than the other 

four algorithms. Hence, the comparison results illustrate that the AMIDIF is better than the other four 

algorithms in the sun gear chipping fault diagnosis. 

 

Fig. 34. Processing results of the sun gear chipping by the MGPO: (a) waveform (b) envelope 

spectrum. 

Table 7. The contrast results between the AMIDIF and other four algorithms. 

Algorithms SNR CPU running time (s) 

AMIDIF 0.010 390.377 

ACDIF -6.392 1342.231 

MGPO -18.239 1228.227 

SK 0.003 14.009 

MOMEDA -6.221 8.845 



 

Fig. 35. Processing results of the sun gear chipping by the ACDIF: (a) waveform (b) envelope 

spectrum. 

 

Fig. 36. Processing results of the sun gear chipping by the SK: (a) kurtogram (b) envelope (c) squared 

envelope spectrum. 



 

Fig. 37. Processing results of the sun gear chipping by the MOMEDA: (a) waveform (b) envelope 

spectrum. 

In order to further comparison study, the sun gear chipping vibration signals are collected under 

variable conditions from 0%, 25%, 50%, 75% and 90% loads. The detection results of sun gear chipping 

under variable conditions with five algorithms are presented in Fig. 38. It can be observed that the 

AMIDIF has stronger fault feature extraction capabilities compared with the other four algorithms under 

variable conditions. It is essential to note that the fault defect index value of the SK is higher than that of 

the AMIDIF under 75% load. The reason for this phenomenon may be that the frequency band selected 

by the SK using the kurtosis value is more accurate under 75% load. Overall, the AMIDIF can more 

accurately realize the planetary gearbox fault diagnosis contrast with the four methods (ACDIF, MGPO, 

SK and MOMEDA). 



 

Fig. 38. Fault defect index of five algorithms under variable conditions. 

7. Conclusion 

In this paper, an adaptive multi-scale morphological filter named AMIDIF is proposed, which can 

effectively remove the interference of random noise and harmonic frequencies to enhance transient 

impulses. To solve the issue of manual selection of the weighted coefficients in AMIDIF, a weighted 

reconstruction algorithm based on correlation coefficient is presented in which the weighted coefficients 

are counted and distributed to the corresponding MIDIF filtered signals to highlight the useful MIDIFs 

and reduce the interference from other MIDIFs. The feasibility of the AMIDIF is demonstrated through 

a numerical simulation and experimental cases of bearing with outer race fault and planetary gearbox 

with sun gear chipping. The results illustrate that the AMIDIF has great benefits for transient impulses 

enhancement. In addition, the AMIDIF is superior to the multi-scale difference morphology filters (i.e. 

ACDIF and MGPO), SK and MOMEDA in fault feature extraction. However, the AMIDIF still has some 

shortcomings that need to be researched and improved. On the one hand, although the AMIDIF is 

superior to the existing multi-scale morphological filters (i.e. ACDIF and MGPO) in accuracy 

improvement, it still needs spend a lot of running time in data analysis with low computational efficiency, 

which cannot be applied in online condition monitoring. On the other hand, the effectiveness of the 

AMIDIF in extracting fault features will be reduced in the case lower SNR. Thus, the above mentioned 

issues need to be paid more attention in the future research. 
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