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This paper offers a set of novel navigation techniques that rely on the use of inertial sensors and wide-field optical flow information.
The aircraft ground velocity and attitude states are estimated with an Unscented Information Filter (UIF) and are evaluated with
respect to two sets of experimental flight data collected from an Unmanned Aerial Vehicle (UAV). Two different formulations are
proposed, a full state formulation including velocity and attitude and a simplified formulation which assumes that the lateral and
vertical velocity of the aircraft are negligible. An additional state is also considered within each formulation to recover the image
distance which can be measured using a laser rangefinder.The results demonstrate that the full state formulation is able to estimate
the aircraft ground velocity to within 1.3m/s of a GPS receiver solution used as reference “truth” and regulate attitude angles within
1.4 degrees standard deviation of error for both sets of flight data.

1. Introduction

Information about the velocity and attitude of an aircraft is
important for purposes such as remote sensing [1], naviga-
tion, and control [2]. Traditional low-cost aircraft naviga-
tion relies on the use of both inertial sensors and Global
Positioning System (GPS) [3–5]. While GPS can provide
useful information to an aircraft system, this information is
not always available or reliable in certain situations, such as
flying in urban environments or otherGPS-denied areas (e.g.,
under radio-frequency jamming or strong solar storm). GPS
is not self-contained within the aircraft system; rather the
information comes from external satellites. Insects, such as
the honeybee, have demonstrated impressive capabilities in
flight navigation without receiving external communications
[6]. One significant information source that is used by insects
as well as birds is vision [6–8]. This information can also
be made available to an aircraft through the use of onboard
video cameras. The challenge with this information rich data

is correctly processing and integrating the vision data with
the other onboard sensor measurements [9].

Vision data can be processed using feature detection
algorithms such as the Scale-Invariant Feature Transform
(SIFT) [10] to obtain optical flow vectors, as well as other
techniques. Optical flow is useful for aircraft systems because
it is rich in navigation information, simple to represent, and
easy to compute [11]. One of the benefits of this information
is that it can be used in order to extract velocity information
about the aircraft, which in turn can be used for aircraft
positioning. This optical flow information has been used for
autonomous navigation applications such as relative heading
and lateral position estimation of a quadrotor helicopter [12,
13]. Another work has considered the use of optical flow for
UAV take-off and landing [14] and landmark navigation [15].
Another potential benefit of optical flow is that it implicitly
contains information about the aircraft attitude angles. This
implicit information has been used in related work for UAV
attitude estimation using horizon detection and optical flow
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along the horizon line [16, 17] and pose estimation for
a hexacopter [18], a lunar rover [19], and spacecraft [20].
While this work is useful, these vehicles contain significantly
different dynamic characteristics than a typical airplane. Due
to this, more analysis of the application of optical flow for
airplane applications is necessary.

This work presents a combined velocity and attitude esti-
mation algorithm using wide-field optical flow for airplanes
that does not require horizon detection, which is useful
because the horizon does not need to be visible in the image
frame in order to obtain attitude information. The algorithm
relies on the optical flow computed using a downward facing
video camera, measurements from a laser range finder and
an Inertial Measurement Unit (IMU) that are mounted in
parallel to the camera axis, and a flat ground assumption
to determine information about the aircraft velocity and
attitude. Many of the existing experiments for optical flow
and inertial sensor fusion are done using helicopter platforms
and focus on position and velocity estimation [21, 22]. This
work considers an airplane system rather than a helicopter,
which contains a significantly different flight envelope and
dynamics. Additionally, the regulation of attitude informa-
tion through the use of optical flow is considered, which is
not typically done in existing applications. This work takes
advantage of all detected optical flow points in the image
plane, including wide-field optical flow points which were
often omitted in previous works [23–25]. These wide-field
optical flow points are of significant importance for attitude
estimation, since they contain roll and pitch information that
is not observable from the image center. Although this work
considers the use of a laser range finder to recover the distance
between the image scene and the camera, it is possible to
determine this information using other techniques [26]. In
fact, it has been demonstrated that the scale is an observable
mode for the vision and IMU data fusion problem [27].
The presented formulation was originally offered in its early
stages of development in [28]. Since this original publication,
the implementation and tuning of the formulation have
been refined, and additional results have been generated.
In particular, a simplified formulation is offered which
reduces the filter states, and the inclusion of a range state
is considered. The main contribution of this paper is the
analysis of a stable vision-aided solution for the velocity and
attitude determination without the use of GPS. This solution
is verified with respect to two sets of actual UAV flight testing
data.

The rest of this paper is organized as follows. Section 2
presents the different considered formulations and frame-
work for this problem. Section 3 describes the experimental
setup which was used to collect data for this study. The
results are offered in Section 4 followed by a conclusion in
Section 5.

2. Problem Formulation

2.1. Optical Flow Equations. Optical flow is the projection of
3D relative motion into a 2D image plane. Using the pinhole
camera model, the 3D position (𝜂

𝑥
, 𝜂
𝑦
, 𝜂
𝑧
) in the 3D camera

body frame can be mapped into the 2D image plane with
coordinates (𝜇, ]) using

𝜇 = 𝑓
𝜂
𝑥

𝜂
𝑧

,

] = 𝑓
𝜂
𝑦

𝜂
𝑧

,

(1)

where 𝜇, ], and 𝑓 are given in pixels and 𝑓 is the focal
length. For a downward looking camera that is parallel to the
aircraft 𝑧-axis, and with a level and flat ground assumption,
the optical flow equations have been derived [29]:

[
𝜇̇

]̇
] =

𝑓 + ] tan𝜙 − 𝜇 tan 𝜃/ cos𝜙
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]
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(2)

where 𝜙, 𝜃 are the roll and pitch angles, 𝑝, 𝑞, 𝑟 are the roll,
pitch, and yaw body-axis angular rates, 𝑢, V, 𝑤, are the body-
axis ground velocity components of the aircraft, and 𝜇̇, ]̇ are
the components of optical flow in the 2D image plane, given
in pixels/sec.This equation captures the relationship between
optical flow at various parts of the image plane with other
pieces of navigation information. By considering only the
area close to the image center (𝜇 ≈ 0, ] ≈ 0), the narrow-field
optical flow model can be simplified [23–25]; however, this
removes the roll and pitch dependence of the equation and is
therefore not desirable for attitude estimation purposes.

2.2. State Space Formulation and Stochastic Modeling. This
work considers the simultaneous estimation of body-axis
ground velocity components (𝑢, V, 𝑤) and Euler attitude
angles (𝜙, 𝜃, 𝜓). This estimation is performed through the
fusion of Inertial Measurement Unit (IMU)measurements of
body-axis accelerations (𝑎

𝑥
, 𝑎
𝑦
, 𝑎
𝑧
) and angular rates (𝑝, 𝑞, 𝑟),

laser rangefinder range measurements (𝐿), and 𝑛 sets of
optical flow measurements (𝜇̇, ]̇)i, where 𝑖 = 1, 2, . . . , 𝑛. The
value of 𝑛 varies with each time step based on how many
features in the frame can be used for optical flow calculation.
Using these values, the state space model of the system is
formulated with the following state vector, x, bias state vector,
b, input vector, u, optical flow input vectors, d

𝑖
, and output

vectors, z
𝑖
:

x = [𝑢 V 𝑤 𝜙 𝜃 𝜓 b𝑇]
𝑇

,

b = [𝑏𝑎
𝑥

𝑏
𝑎
𝑦

𝑏
𝑎
𝑧

𝑏
𝑝

𝑏
𝑞

𝑏
𝑟

𝑏
𝐿]
𝑇

,

u = [𝑎
𝑥

𝑎
𝑦

𝑎
𝑧

𝑝 𝑞 𝑟 𝐿]
𝑇

,

d
𝑖
= [𝜇 ]]𝑇

𝑖
,

z
𝑖
= [𝜇̇ ]̇]𝑇

𝑖
.

(3)
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Figure 1: Diagram of the range coordinate.

A diagram describing the definition of the range coordinate,
𝐿, is provided in Figure 1. Note that the range coordinate, 𝐿,
is equivalent to the camera 𝑧 coordinate, 𝜂

𝑧
.

In order to determine the dynamics of the velocity states,
the time derivative of the velocity vector observed from the
fixed navigation frame is equal to the time rate of change as
observed from the moving body axis frame plus the change
caused by rotation of the frame [30]:

𝑑
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]

]
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. (4)

The IMU measures the acceleration with respect to the fixed
gravity vector, as in
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, (5)

where 𝐶𝑏
𝑛
is the rotation matrix from the navigation frame to

the body frame:

𝐶
𝑏

𝑛
=

[
[

[

cos 𝜃 cos𝜓 cos 𝜃 sin𝜓 − sin 𝜃

− cos𝜙 sin𝜓 + sin𝜙 sin 𝜃 cos𝜓 cos𝜙 cos𝜓 + sin𝜙 sin 𝜃 sin𝜓 sin𝜙 cos 𝜃
sin𝜙 sin𝜓 + cos𝜙 sin 𝜃 cos𝜓 − sin𝜙 cos𝜓 + cos𝜙 sin 𝜃 sin𝜓 cos𝜙 cos 𝜃

]
]

]

. (6)

Combining these results gives the dynamics for the velocity
states [31]:

[
[

[

𝑢̇
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]

]

=
[
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]
]

]

. (7)

The dynamics of the attitude states are defined using [32]

[
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=
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To define the dynamics for the bias parameters, a first-
order Gauss-Markov noise model was used. In a related
work [33], the Allan deviation [34] approach presented in
[35, 36] was used to determine the parameters of the first-
order Gauss-Markov noisemodel for the dynamics of the bias
on each IMU channel. The Gauss-Markov noise model for
each sensor measurement involves two parameters: a time
constant and a variance of the wide-band sensor noise. Using
this model, the dynamics for the bias parameters are given by

b
𝑘
= b
𝑘−1

𝑒
−𝑇
𝑠
/𝜏

+ n
𝑘−1

, (9)

where 𝜏 is a vector of time constants and n is a zero-mean
noise vector with variance given by a diagonal matrix of

the variance terms for each sensor. The time constant and
variance terms were calculated in [33] for each channel of the
same IMU that was considered for this study.

The state dynamic equations have been defined in
continuous-time using the following format:

ẋ = f
𝑐
(x, u) , (10)

where f
𝑐
is the nonlinear continuous-time state transition

function. In order to implement these equations in a discrete-
time filter, a first-order discretization is used [37]:

x
𝑘
= x
𝑘−1

+ 𝑇
𝑠
f
𝑐
(x
𝑘−1

, u
𝑘−1

) ≜ f (x
𝑘−1

, u
𝑘−1

) , (11)

where 𝑘 is the discrete time index, f is the nonlinear discrete-
time state transition function, and 𝑇

𝑠
is the sampling time of

the system.
To formulate the observation equations, optical flow

information is utilized. In particular, each optical flow point
identified from vision data consists of four values: 𝜇, ], 𝜇̇, ]̇.
These values are obtained using a point matching method
[38] and the Scale-Invariant Feature Transform (SIFT) algo-
rithm [10]. Note that the method for optical flow generation
is not the emphasis of this research [38]; therefore, any
other optical flow algorithm can be used similarly within the
proposed estimator, without any loss of generality.

During the state estimation process, the image plane
coordinates (𝜇, ]) are taken as inputs to the observation
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equation, allowing the optical flow (𝜇̇, ]̇) to be predicted
at that point in the image plane using (2), where 𝜂

𝑧
is

provided by the laser rangefinder measurement, 𝐿. These
computed observables are then compared with the optical
flow measurements of (𝜇̇, ]̇) from the video in order to
determine how to update the states. Since multiple optical
flow points can be identified within a single time step, this
creates a set of 𝑛

𝑘
observation equations, where 𝑛

𝑘
is the

number of optical flow points at time step 𝑘.
Since (7) and (8) are derived from kinematics, the only

uncertainty that must be modeled is due to the input
measurements. Therefore, the input vector is given by

u
𝑘−1

= û
𝑘−1

+ b
𝑘−1

, (12)

where û is the measured input vector and b is the vector of
sensor biases which follow a first order Gauss-Markov noise
model as determined in [33].

The uncertainty in the measurements is due to the errors
in the optical flow estimation from the video. It is assumed
that each optical flow measurement y

𝑖
has an additive

measurement noise vector, v
𝑖
, with corresponding covariance

matrix, R
𝑖
. For this study, it is also assumed that each optical

flow measurement carries equal uncertainty and that errors
along the two component directions of the image plane also
have equal uncertainty and are uncorrelated; that is,

R
𝑖
= R = 𝑅I, (13)

where 𝑅 is the scalar uncertainty of the optical flowmeasure-
ments and I is a 2 × 2 identity matrix.

2.3. Simplified Formulation. Themotion of a typical airplane
is mostly in the forward direction, that is, the speed of the
aircraft is primarily contained in the component, 𝑢, while
V and 𝑤 are small. With this idea, assuming that V and 𝑤

are zero, the formulation is simplified to the following state
vector, x, bias state vector,b, input vector,u, optical flow input
vectors, d

𝑖
, and output vectors, z

𝑖
:

x = [𝑢 𝜙 𝜃 b𝑇]
𝑇

,

b = [𝑏
𝑎
𝑥

𝑏
𝑝

𝑏
𝑞

𝑏
𝑟

𝑏
𝐿
]
𝑇

,

u = [𝑎
𝑥

𝑝 𝑞 𝑟 𝐿]
𝑇

,

d
𝑖
= [𝜇 ]]𝑇

𝑖
,

z
𝑖
= 𝜇̇
𝑖
.

(14)

Note that this simplified formulation removes the V and 𝑤

states which removes the need for 𝑦-axis and 𝑧-axis accel-
eration measurements. Since the yaw state is not contained
in any of the state or observation equations it has also been
removed. Due to the assumption that V and 𝑤 are zero,

only the 𝑥-direction of optical flow is relevant. With these
simplifications, the state dynamics become

𝑢̇ = 𝑎
𝑥
− 𝑔 sin 𝜃,

̇𝜙 = 𝑝 + 𝑞 sin𝜙 tan 𝜃 + 𝑟 cos𝜙 tan 𝜃,

̇𝜃 = 𝑞 cos𝜙 − 𝑟 sin𝜙.

(15)

The dynamics of the bias states remain the same as in the full
formulation except the corresponding bias states for 𝑎

𝑦
and

𝑎
𝑧
have been removed. The observation equations from (2)

are simplified to be

𝜇̇ =
−𝑢 (𝑓 + ] tan𝜙 − 𝜇 tan 𝜃/ cos𝜙)

𝜂
𝑧

− 𝑓𝑞 + 𝑟]

+
𝑝𝜇]
𝑓

−
𝑞𝜇2

𝑓
.

(16)

The advantage of considering this simplified formulation
is primarily to reduce the computational complexity of the
system. The processing of vision data leading to a relatively
large number of measurement updates can significantly
drive up the computation time of the system, particularly
for higher sampling rates. This simplified formulation not
only reduces the computation time through a reduction
of states, but also significantly reduces the processing and
update time for optical flow measurements since only the
forward component of flow is used. This formulation could
be more practical than the full state formulation for real-time
implementation, especially on systems which are limited in
onboard computational power due, for example, to cost or
size constraints.

2.4. Inclusion of a Range State. It is possible to include a
state to estimate the range in order to recover the scale of
the optical flow images. To determine the dynamics of the
range state, the flat ground assumption is used. With this
assumption, consider the projection of the range vector onto
the Earth-fixed 𝑧-axis, that is, “down,” as shown in Figure 1, by
taking the projection through both the roll and pitch angles
of the aircraft:

𝑧 = −𝐿 cos𝜙 cos 𝜃. (17)

Here, the negative sign is used because the 𝐿 coordinate
is always positive, while the 𝑧 coordinate will be negative
when the aircraft is above the ground (due to the “down”
convention). Taking the derivative with respect to time yields

𝑧̇ = −𝐿̇ cos𝜙 cos 𝜃 + ̇𝜙𝐿 sin𝜙 cos 𝜃 + ̇𝜃𝐿 cos𝜙 sin 𝜃. (18)

Compare this 𝑧-velocity equation with that obtained from
rotating aircraft body velocity components into the Earth-
fixed frame:

𝑧̇ = −𝑢 sin 𝜃 + V sin𝜙 cos 𝜃 + 𝑤 cos𝜙 cos 𝜃. (19)

Equating these two expressions for 𝑧-velocity gives

− 𝐿̇ cos𝜙 cos 𝜃 + ̇𝜙𝐿 sin𝜙 cos 𝜃 + ̇𝜃𝐿 cos𝜙 sin 𝜃

= −𝑢 sin 𝜃 + V sin𝜙 cos 𝜃 + 𝑤 cos𝜙 cos 𝜃.
(20)



Journal of Robotics 5

Simplifying this relationship leads to

𝐿̇ = ̇𝜙𝐿 tan𝜙 + ̇𝜃𝐿 tan 𝜃 + 𝑢 sec𝜙 tan 𝜃 − V tan𝜙 − 𝑤. (21)

Substituting in the dynamics for the roll and pitch angles and
simplifying leads to the following expression for the range
state dynamics:

𝐿̇ = 𝑢 sec𝜙 tan 𝜃 − V tan𝜙 − 𝑤

+ 𝐿 [𝑝 tan𝜙 + 𝑞 sec𝜙 tan 𝜃] .
(22)

Note that, for level conditions, that is, roll and pitch angles are
zero, the equation reduces to

𝐿̇ = −𝑤 (23)

which agrees with physical intuition. In order to implement
the range state in the simplified formulation, the following
expression can be used:

𝐿̇ = 𝑢 sec𝜙 tan 𝜃 + 𝐿 [𝑝 tan𝜙 + 𝑞 sec𝜙 tan 𝜃] . (24)

2.5. Information Fusion Algorithm. Due to the nonlinearity,
nonadditive noise and numbers of multiple optical flow
measurements ranging from 0 to 300 per frame with a
mean of 250, the Unscented Information Filter (UIF) [39–
41] was selected for the implementation of this algorithm
[42]. The advantage of the information filtering framework
over Kalman filtering is that redundant information vectors
are additive [39–41]; therefore, the time-varying number of
outputs obtained from optical flow can easily be handled with
relatively low computation, since the coupling between the
errors in different optical flow measurements is neglected.
The UIF algorithm is summarized as follows [41].

Consider a discrete time nonlinear dynamic system of the
form

x
𝑘
= f (x

𝑘−1
, u
𝑘−1

) + w
𝑘−1

, (25)

with measurement equations of the form

z
𝑘
= h (x

𝑘
, d
𝑘
) + k
𝑘
, (26)

where h is the observation function andw and v are the zero-
mean Gaussian process and measurement noise vectors. At
each time step, sigma-points are generated from the prior
distribution using

𝜒
𝑘−1

= [x̂
𝑘−1

x̂
𝑘−1

+ √𝑁 + 𝜆√P
𝑘−1

x̂
𝑘−1

− √𝑁 + 𝜆√P
𝑘−1

] ,
(27)

where 𝑁 is the total number of states and 𝜆 is a scaling
parameter [42]. Now, the sigma-points are predicted using

𝜒
(𝑖)

𝑘|𝑘−1
= f (𝜒(𝑖)

𝑘−1
, u
𝑘−1

) , 𝑖 = 0, 1, . . . , 2𝑁, (28)

where (𝑖) denotes the 𝑖th column of a matrix. The a priori
statistics are then recovered:

x̂
𝑘|𝑘−1

=

2𝑁

∑
𝑖=0

𝜂
𝑚

𝑖
𝜒
(𝑖)

𝑘|𝑘−1
,

P
𝑘|𝑘−1

= Q
𝑘−1

+

2𝑁

∑
𝑖=0

𝜂
𝑐

𝑖
(𝜒
(𝑖)

𝑘|𝑘−1
− x̂
𝑘|𝑘−1

) (𝜒
(𝑖)

𝑘|𝑘−1
− x̂
𝑘|𝑘−1

)
𝑇

,

(29)

where Q is the process noise covariance matrix, and 𝜂𝑚
𝑖
and

𝜂
𝑐

𝑖
are weight vectors [42]. Using these predicted values, the

information vector, y, and matrix, Y, are determined:

ŷ
𝑘|𝑘−1

= P−1
𝑘|𝑘−1

x̂
𝑘|𝑘−1

,

Y
𝑘|𝑘−1

= P−1
𝑘|𝑘−1

.

(30)

For each measurement, that is, each optical flow pair, the
output equations are evaluated for each sigma-point, as in

𝜓
(𝑖,𝑗)

𝑘|𝑘−1
= h (𝜒

(𝑖,𝑗)

𝑘|𝑘−1
, d
𝑘
) ,

𝑖 = 0, 1, . . . , 2𝑁, 𝑗 = 1, . . . , 𝑛
𝑘
,

(31)

where 𝜓 denotes an output sigma-point and the superscript
(𝑖, 𝑗) denotes the 𝑖th sigma-point and the 𝑗th measurement.
The computed observation is then recovered using

ẑ(𝑗)
𝑘|𝑘−1

=

2𝑁

∑
𝑖=0

𝜂
𝑚

𝑖
𝜓
(𝑖)

𝑘|𝑘−1
, 𝑗 = 1, . . . , 𝑛

𝑘
. (32)

Using the computed observation, the cross-covariance is
calculated:

P𝑥𝑦(𝑗)
𝑘|𝑘−1

=

2𝑁

∑
𝑖=0

𝜂
𝑐

𝑖
(𝜒
(𝑖)

𝑘|𝑘−1
− x̂
𝑘|𝑘−1

) (𝜓
(𝑖)

𝑘|𝑘−1
− ẑ
𝑘|𝑘−1

)
𝑇

. (33)

Then the observation sensitivity matrix,H, is determined:

H(𝑗)
𝑘

= [P−1
𝑘|𝑘−1

P𝑥𝑦(𝑗)
𝑘|𝑘−1

]
𝑇

, 𝑗 = 1, . . . , 𝑛
𝑘
. (34)

The information contributions can then be calculated:

ŷ
𝑘
= ŷ
𝑘|𝑘−1
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𝑛
𝑘
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(H(𝑗)
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𝑘
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𝑘

− z(𝑗)
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+ H(𝑗)
𝑘
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] ,

Y
𝑘
= Y
𝑘|𝑘−1

+

𝑛
𝑘

∑
𝑗=1

(H(𝑗)
𝑘

)
𝑇

R−1
𝑘
H(𝑗)
𝑘

.

(35)

3. Experimental Setup

The research platform used for this study is the West
Virginia University (WVU) “Red Phastball” UAV, shown in
Figure 2, with a customGPS/INS data logger mounted inside
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Figure 2: Picture of WVU “Red Phastball” aircraft.

Table 1: Details for WVU Phastball aircraft.

Property Value
Length 2.2m
Wingspan 2.4m
Takeoff mass 11 kg
Payload mass 3 kg
Propulsion system Dual 90mm Ducted Fan Motor
Static thrust 60N
Fuel capacity Two 5Ah LiPo batteries
Cruise speed 30m/s
Mission duration 6min

the aircraft [28, 43]. Some details for this aircraft are provided
in Table 1.

The IMU used in this study is an Analog Devices ADIS-
16405MEMS-based IMU, which includes triaxial accelerom-
eters and rate gyroscopes. Each suite of sensors on the IMU
is acquired at 18-bit resolution at 50Hz over ranges of ±18 g’s
and ±150 deg/s, respectively. The GPS receiver used in the
data logger is a Novatel OEM-V1, which was configured to
provide Cartesian position and velocity measurements and
solution standard deviations at a rate of 50Hz, with 1.5m
RMS horizontal position accuracy and 0.03m/s RMS velocity
accuracy. An Optic-Logic RS400 laser range finder was used
for range measurement with an approximate accuracy of
1m and range of 366m, pointing downward. In addition,
a high-quality Goodrich mechanical vertical gyroscope is
mounted onboard the UAV to provide pitch and roll mea-
surements to be used as sensor fusion “truth” data, with
reported accuracy of within 0.25∘ of true vertical.The vertical
gyroscope measurements were acquired at 16-bit resolution
with measurement ranges of ±80 deg for roll and ±60 deg for
pitch.

A GoPro Hero video camera is mounted at the center
of gravity of the UAV for flight video collection, pointing
downwards. The camera was previously calibrated to a focal
length of 1141 pixels [29]. Two different sets of flight data were
used for this study, each using different camera settings. The
first flight used a pixel size of 1920 × 1080 and a sampling
rate of 29.97Hz. The second flight used a pixel size of 1280 ×

720 and a sampling rate of 59.94Hz. All the other sensor data
were collected at 50Hz and resampled to the camera time for
postflight validation after manual synchronization.

(a) (b)

Figure 3: Flight trajectories for Flight #1 (a) and Flight #2 (b), © 2014
Google.

4. Experimental Results

4.1. Flight Data. Two sets of flight data from the WVU “Red
Phastball” aircraft were used in this study. Each flight consists
of approximately 5 minutes of flight. The top-down flight
trajectories from these two data sets are overlaid on a Google
Earth image of the flight test location in Figure 3. Six different
unique markers have been placed in Figure 3 in order to
identify specific points along the trajectory. These markers
will be used in future figures in order to synchronize the
presentation of data.

4.2. Selection of Noise Assumptions for Optical Flow Mea-
surements. Since the noise properties of the IMU have been
established from previous work [33], only the characteris-
tics of the uncertainty in the laser range and optical flow
measurements need to be determined. The uncertainty in
the laser range finder measurement is modeled as 1m zero-
mean Gaussian noise, based on the manufacturer’s reported
accuracy of the sensor. The optical flow errors are a bit
more difficult to model. Due to this difficulty, different
assumptions of the optical flow uncertainty were considered.
Using both sets of the flight data, the full state UIF was
executed for each assumption of optical flow uncertainty. To
evaluate the performance of the filter, the speed measure-
ments were compared with reference measurements from
GPS which have been mapped into the aircraft frame using
roll and pitch measurements from the vertical gyroscope
and approximating the yaw from the heading as determined
by GPS. The roll and pitch estimates were compared with
the measurements from the vertical gyroscope. Due to the
possibility of alignment errors, only standard deviation of
error was considered. Each of these errors was calculated for
each set of flight data, and the results are offered in Figure 4.

Figure 4 shows how changing the assumption on the opti-
cal flow uncertainty affects the estimation performance of the
total ground speed, roll angle, and pitch angle. The relatively
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Figure 4: Comparison of errors for different assumed optical flow
uncertainties.

flat region in Figure 4 for assumed optical flow standard
deviations from approximately 3 to 9 pixels indicates that
this formulation is relatively insensitive to tuning of these
optical flow errors. It is also interesting to note in Figure 4
that Flight #1 and Flight #2 have optimum performance at
different values of 𝑅. This however makes sense, as Flight #2
has twice the frame rate as Flight #1; therefore, the assumed
noise characteristics should be one half that of Flight #1. From
Figure 4, the optical flow uncertainties were selected to be
𝑅 = 5

2 pixels2 for Flight #1 and 𝑅 = 2.52 pixels2 for Flight
#2.

4.3. Full State Formulation Estimation Results. Using each
set of flight data, the full state formulation using UIF was
executed. The estimated components of velocity are shown
for Flight #1 in Figure 5 and for Flight #2 in Figure 6. These
estimates from theUIF are offeredwith respect to comparable
reference values from GPS, which were mapped into the
aircraft frame using roll and pitch measurements from the
vertical gyroscope and approximating the yaw angle with the
heading angle obtained fromGPS. From each of these figures,
the following observations can bemade.The forward velocity,
𝑢, is reasonably captured by the estimation. The lateral
velocity, V, and vertical velocity, 𝑤, however, demonstrate
somewhat poor results. This does however make sense, as
the primary direction of flight is forward, thus resulting in
good observability characteristics in the optical flow in the
forward direction, while the signal-to-noise ratio (SNR) for
the lateral and vertical directions remains small for most
typical flight conditions. However, since these lateral and
vertical components are only a small portion of the total
velocity, the total speed can be reasonably approximated
by this technique. The total speed estimates are shown in
Figure 7 for Flight #1 with GPS reference.
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Figure 5: Estimated velocity components for Flight #1.
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Figure 6: Estimated velocity components for Flight #2.
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Figure 8: Roll and pitch estimation results for Flight #2.

The attitude estimates for the roll and pitch angles are
compared with the vertical gyroscope measurements as a
reference, as shown in Figure 8. In order to demonstrate the
effectiveness of this method in regulating the drift in attitude
estimates that occurs with dead reckoning, the estimation
errors from the UIF are compared with the errors obtained
from dead reckoning attitude estimation. These roll and
pitch errors are offered in Figure 9 for Flight #2. Figure 9
demonstrates the effectiveness of the UIF in regulating the
attitude errors from dead reckoning.

In order to quantify the estimation results, the mean
absolute error and standard deviation of error of the estimates
are calculated for the velocity components with respect to
the GPS reference and also for the roll and pitch angles with
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Figure 9: Roll and pitch estimation errors as compared to dead
reckoning (DR) for Flight #2.

Table 2: Flight #1 error statistics for estimated states.

Estimated state Mean abs. Standard deviation Units
𝑢 1.0644 1.2667 m/s
V 2.4699 2.7719 m/s
𝑤 2.1554 1.6554 m/s
𝑉 1.2466 1.2858 m/s
𝜙 1.1553 1.3668 deg
𝜃 2.1752 1.3339 deg

respect to the vertical gyroscope reference. These statistical
results are provided in Table 2 for Flight #1 and Table 3 for
Flight #2, where 𝑉 is the total airspeed as determined by

𝑉 = √𝑢2 + V2 + 𝑤2. (36)

It is shown in Tables 2 and 3 that reasonable errors are
obtained in both sets of flight data for the velocity and attitude
of the aircraft. Larger errors are noted in particular for the
lateral velocity state, V, which is due to observability issues
in the optical flow. Note that mean errors in the roll and
pitch estimation could be due to misalignment between the
vertical gyroscope, IMU, and video camera. The attitude
estimation accuracy is reported in Tables 2 and 3 similar to
the reported accuracy of loosely coupled GPS/INS attitude
estimation using similar flight data [43].

4.4. Simplified Formulation Estimation Results. Since it was
observed in the full state formulation results that the lateral
and vertical estimates were small, the simplified formulation
was implemented in order to investigate the feasibility of a
simplified version of the filter that estimates only the forward
velocity component and assumes the lateral and vertical
components are zero. The forward velocity, 𝑢, for Flight #1
is offered in Figure 10, while the roll and pitch errors with
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Figure 10: Simplified formulation speed estimation results for Flight
#1.
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Figure 11: Simplified formulation attitude estimates with dead
reckoning (DR) for Flight #2.

Table 3: Flight #2 error statistics for estimated states.

Estimated state Mean abs. Standard deviation Units
𝑢 1.1299 1.2663 m/s
V 1.5184 1.8649 m/s
𝑤 1.1324 1.3453 m/s
𝑉 1.2087 1.2535 m/s
𝜙 1.8818 1.2782 deg
𝜃 1.6646 1.1049 deg

respect to the vertical gyroscope measurement are offered in
Figure 11 for the UIF and dead reckoning (DR). Additionally,

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

Time (s)

At
tit

ud
e e

rr
or

 co
rr

el
at

io
n

Δ𝜙 (deg)
Δ𝜃 (deg)
sqrt(�2 + w2) (m/s)

Figure 12: Comparison of attitude estimation errors with respect to
lateral and vertical velocity.

Table 4: Simplified formulation error statistics for Flight #1.

Estimated state Mean abs. Standard deviation Units
𝑢 1.2283 1.5730 m/s
𝜙 1.9901 2.2922 deg
𝜃 1.9002 2.1881 deg

Table 5: Simplified formulation error statistics for Flight #2.

Estimated state Mean abs. Standard deviation Units
𝑢 1.3073 1.5775 m/s
𝜙 2.8402 3.5426 deg
𝜃 2.0286 2.4691 deg

the mean absolute error and standard deviation of error for
these terms are provided in Table 4 for Flight #1 and Table 5
for Flight #2.

It is shown in Tables 4 and 5 that the simplified formula-
tion results in significantly higher attitude estimation errors
with respect to the full state formulation. These increased
attitude errors are likely due to the assumption that lateral
and vertical velocity components are zero. To investigate
this possible correlation, the roll and pitch errors are shown
in Figure 12 with the magnitude of the lateral and vertical
velocity as determined from GPS for a 50-second segment of
flight data which includes takeoff. Figure 12 shows that there
is some correlation between the attitude estimation errors
and the lateral and vertical velocity, though it is not the only
source of error for these estimates.

4.5. Results Using Range State. The results for each flight for
both the full state formulation and simplified formulation
were recalculated with the addition of the range state. The
statistical results for these tests are offered in Tables 6–9.
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Table 6: Flight #1 error statistics for estimated stateswith range state.

Estimated state Mean abs. Standard deviation Units
𝑢 1.1330 1.3699 m/s
V 2.4387 2.7369 m/s
𝑤 2.1210 1.5998 m/s
𝑉 1.3041 1.3852 m/s
𝜙 1.1599 1.4084 deg
𝜃 2.1767 1.4064 deg

Table 7: Flight #2 error statistics for estimated states with range
state.

Estimated state Mean abs. Standard deviation Units
𝑢 1.1444 1.2937 m/s
V 1.5122 1.8529 m/s
𝑤 1.1154 1.3268 m/s
𝑉 1.2112 1.2761 m/s
𝜙 1.8897 1.2845 deg
𝜃 1.6609 1.1152 deg

Table 8: Simplified formulation error statistics for Flight #1 with
range state.

Estimated state Mean abs. Standard deviation Units
𝑢 1.2919 1.6256 m/s
𝜙 2.0621 2.3746 deg
𝜃 1.9277 2.2713 deg

Table 9: Simplified formulation error statistics for Flight #2 with
range state.

Estimated state Mean abs. Standard deviation Units
𝑢 1.3356 1.6016 m/s
𝜙 2.8748 3.5462 deg
𝜃 2.0303 2.4876 deg

In order to compare the results from the different cases,
the standard deviation of error is shown graphically for
Flight #1 in Figure 13 and Flight #2 in Figure 14. It is shown
in Figures 13 and 14 that the simplified formulation offers
poorer estimation performance as expected, particularly for
the attitude estimates.The addition of the range state does not
affect the performance significantly.

5. Conclusions

This paper presented vision-aided inertial navigation tech-
niques which do not rely upon GPS using UAV flight
data. Two different formulations were presented, a full state
estimation formulation which captures the aircraft ground
velocity vector and attitude and a simplified formulation
which assumes all of the aircraft velocity is in the forward
direction. Both formulations were shown to be effective in
regulating the INS drift. Additionally, a state was included in
each formulation in order to estimate the distance between
the image center and the aircraft. The full state formulation
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was shown to be effective in estimating aircraft ground
velocity to within 1.3m/s and regulating attitude angles
within 1.4 degrees standard deviation of error for both sets
of flight data.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



Journal of Robotics 11

Acknowledgments

This work was supported in part by NASA Grant no.
NNX12AM56A, Kansas NASA EPSCoR PDG grant, and SRI
grant.

References

[1] C. Li, L. Shen, H.-B. Wang, and T. Lei, “The research on
unmanned aerial vehicle remote sensing and its applications,”
in Proceedings of the IEEE International Conference onAdvanced
Computer Control (ICACC ’10), pp. 644–647, Shenyang, China,
March 2010.

[2] A. J. Calise and R. T. Rysdyk, “Nonlinear adaptive flight control
using neural networks,” IEEE Control SystemsMagazine, vol. 18,
no. 6, pp. 14–24, 1998.

[3] M. S. Grewal, L. R. Weill, and A. P. Andrew, Global Positioning,
Inertial Navigation & Integration, Wiley, New York, NY, USA,
2nd edition, 2007.
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