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Abstract 

To extract impulsive feature from vibration signals with strong background noise and interference 

components for accurate bearing diagnostics., a multi-stage noise reduction method is proposed based 

on ensemble empirical mode decomposition (EEMD), wavelet denoising and modulation signal 

bispectrum (MSB) Firstly, noisy vibration signals are applied with EEMD to obtain a list of intrinsic 

mode functions (IMFs) that leverage the desired modulation components to different degrees. Then, a 

number of initial IMFs in the high frequency range, which are separated by using the mean of the 

standardized accumulated modes (MSAM) to have more modulation contents, are further denoised by a 

wavelet shrinkage approach. These cleaned IFMs in the high frequency are combined with the low 

frequency IFMs to construct a pre-denoised signal that maintains the modulation properties of the signal. 

Finally, a modulation signal bispectrum (MSB) is used to extract the modulation signature by suppressing 

further the residual random noise and deterministic interference components. This multiple stage noise 

reduction method is validated through a simulation study and two experimental fault cases studies of 

rolling element bearing. The results are more accurate and reliable in diagnosing the inner and outer race 

defects in comparison with the individual use of the start of the art EEMD or MSB. 

 

The MSAM is taken as a novel criterion to divide the IMFs into low- and high-frequency parts. 

Subsequently, a wavelet based pre-denoising is used to process the high-frequency IMFs, which is then 

joined with the low-frequency IMFs to generate a reconstructed signal with much less noise. The EEMD-

Wavelet model can effectively reduce the background noise and enhance the impulse characteristic in 

the vibration signal. However, the nonlinear modulation and uncoupling frequency components are still 

existed in the reconstructed signal. Finally, the modulation signal bispectrum (MSB) is explored to 

decompose the modulated components and extract the fault-related characteristics from the reconstructed 

signal.  

The proposed method is validated through a simulation study and two experimental fault cases 

studies of rolling element bearing. The analysis results demonstrate that the proposed method is effective 

in the fault feature extraction with high accuracy in comparison with the individual EEMD and MSB. 

 

 

Keywords: EEMD-Wavelet model; mean of the standardized accumulated modes; modulation signal 

bispectrum; rolling element bearing; feature extraction  
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1. Introduction 

Rolling element bearings are important rotating parts in mechanical equipment but malfunctions 

may hinder the normal operation of the entire rotating machine [1]. Hence, the effective detection of the 

early damage stages of bearings has attracted much attention recently. In practical engineering, a series 

of impulse components will be generated when a rolling element bearing has a local defect [2]. However, 

these impulses are usually submerged in the complicated vibration signals that contain strong background 

noise and interference components, making the fault feature extraction extremely complicated and 

difficult [3]. Therefore, how to accurately extract impulsive feature from strong background noise and 

interference components is worthy for further study.  

Up to now, various feature extraction approaches have been widely applied in rolling element 

bearing fault diagnosis [4-5]. For example, wavelet transform (WT), Wigner-Ville distribution (WVD), 

morphological filter (MF), and sparse decomposition, etc. Although these approaches have been widely 

certified in the bearing fault detection, they have their own unique disadvantages. For instance, the WT 

is a state-of-the-art analysis method, but its wavelet basis and mother wavelet need to be selected in 

advance [6-7]. The WVD is affected by cross-interference items [8-9]. The MF is well known for it can 

reserve signal details, but it suffers from the structure element selection problems [10-11]. The sparse 

decomposition has good signal decomposition performance, but it relies on the atom library and 

decomposition method [12-13]. However, these methods are not suitable to deal with complicated 

vibration signals that reflect nonlinear and non-stationary characteristics, while empirical mode 

decomposition (EMD) is not governed by this limitation because of its adaptive ability [14]. EMD is able 

to decompose a signal into a battery of intrinsic mode functions (IMFs). However, the end effects and 

mode mixing of EMD may lead to the IMFs losing its specific physical meaning. 

Ensemble empirical mode decomposition (EEMD), a strengthened approach of EMD, is proposed 

by Wu and Huang [15] and it is able to eliminate the troubles of the EMD end effects and mode mixing 

by adding a finite white series to the measured data. Therefore, EEMD has obtained a lot of attentions in 

the field of rotating machinery fault diagnosis [16–18]. Cheng et al. combined EEMD and kernel 

principal component analysis (KPCA) to identify the extent of planetary gear failure damage [16]. Wang 

et al. applied EEMD to improved tunable Q-factor wavelet transform (TQWT) to well extract fault 

feature of rolling element bearings [17]. Žvokelj et al. proposed a multivariate analysis method based on 

EEMD and independent component analysis (ICA) for rolling element bearing fault detection and 

diagnosis [18]. The above-mentioned studies demonstrated that the EEMD can reduce background noise 

to improve the signal quality for extract fault feature effectively. However, how to select fault-sensitive 

IMFs components is still an inextricable problem. Recently a few analysis methods for the fault-sensitive 

IMFs selection have been reported. Lei et al. recommended correlation coefficient criterion to locate the 

optimal IMFs [19]. Xue et al. proposed the kurtosis criterion to select fault-sensitive IMFs [20]. Singh et 

al. used Jensen Rényi divergence (JRD) to search the optimal IMFs [21]. Hoseinzadeh et al. proposed 

the combined mutual information coefficient and energy to choose the IMFs [22]. However, these studies 

only concentrate upon analyzing few individual IMFs to extract fault-related characteristics, few 

researches pay attentions to reveal fault-related characteristics by considering the contribution of all 

IMFs to fault features extraction as different IMFs display different degrees of effectiveness in revealing 

fault characteristics [23-24]. Moreover, even EEMD can denoise and improve the signal to noise ratio 

(SNR) of the examined signal, there are still exist frequency coupling and nonlinear modulation 

components in the signal after EEMD analysis. 
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The modulation signal bispectrum (MSB) has emerged in the work of nonlinear feature extraction, 

because it allows efficient use of the modulation characteristics and detection coupling frequency pairs 

[25-27]. Gu et al. explored a novel approach for accurately breaking the rotor bar detection by a means 

of the MSB based motor current signal analysis (MCSA) [25]. Tian et al. proved that the MSB-based 

analysis approach can generate more accurate and stronger detection results for rolling element bearing 

fault diagnosis [26]. Guo et al. proposed a new approach combining wavelet packet energy (WPE) and 

MSB to detect planetary gearboxes faults [27]. The above-mentioned studies confirmed that the MSB is 

effective in demodulating a signal with modulation characteristics buried in strong noise and detecting 

coupling frequency pairs of a signal. However, the MSB exposes its weakness when processing the non-

stationary vibration signal [24]. In addition, the frequency implementation of MSB can restrict its noise 

suppression capability due to the effect of spectral smearing. 

To overcome the shortages respective to EEMD and MSB, a hybrid analysis method based on 

EEMD-Wavelet model and MSB for rolling element bearings fault diagnosis is proposed. EEMD is a 

typical adaptive time-frequency approach and plays a successful role in fault detection. To further 

improve the SNR of the vibration signal and take advantage of the contribution of all IMFs to fault feature 

extraction, this paper proposes the mean of the standardized accumulated modes (MSAM) to divide IMFs 

into low- and high-frequency IMFs. The high-frequency IMFs are denoised using a wavelet threshold 

and then reconstructed with the low-frequency IMFs to generate a reconstructed signal with more higher 

SNR. The MSB is then explored in terms of demodulating the reconstructed signal to extract fault-related 

characteristics. 

The remainder of the paper is organized as follows. Section 2 describes the EEMD-Wavelet model. 

Section 3 presents the principles of the MSB. Section 4 introduces the detailed procedure of the proposed 

method based on simulation study. The EEMD-Wavelet-MSB is further tested to diagnose the rolling 

element bearings with inner and outer race faults in section 5. And the conclusions are presented in 

section 6. 

2. Ensemble empirical mode decomposition (EEMD)-Wavelet model 

2.1 EEMD 

EMD is a self-adaptive approach to decompose a non-stationary and non-linear signal into a series 

instinct signal components namely instinct mode function (IMF) for more detailed analysis. As original 

EMD suffers from end effects and mode mixing problems, new noise-assisted data analysis variant, 

EEMD is often used. To understand its usefulness of EEMD in analyzing noise bearing signals, its 

implementation is outlined as follows [28]: 

(1) Initialize the number of ensembles 𝑚 and the added white noise amplitude 𝐴, with 𝑖 = 1. 

 (2) Acquire the original signal 𝑦𝑖(𝑡)  by increasing white noise 𝑛𝑖(𝑡)  with amplitude 𝐴  to the 

raw signal 𝑦(𝑡): 

                          𝑦𝑖(𝑡) = 𝑦(𝑡) + 𝑛𝑖(𝑡)                                (1) 

(3) Apply the EMD method to decompose the original signal 𝑦𝑖(𝑡) into IMFs: 

                        𝑦𝑖(𝑡) = ∑ 𝑐𝑖,𝑗
𝑁
𝑗=1 (𝑡) + 𝑟𝑖,𝑁(𝑡)                            (2) 

where 𝑐𝑖,𝑗(𝑡)  (𝑗 = 1, 2, … , 𝑁) indicates the  j-th IMF of the i-th trial, 𝑖 = 1,2, … , 𝑚. 

and 𝑁 is the number of IMFs. 

(4) Repeat steps of (2) and (3)  for m trials, with a finite white noise series 𝑛𝑖 each time to 

acquire an ensemble of IMFs: 

[𝑐1,𝑗(𝑡), 𝑐2,𝑗(𝑡), … , 𝑐𝑚,𝑗(𝑡)]                          (3) 
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(5) Counted the ensemble means of the corresponding IMFs as the end result: 

                          𝑐𝑗(𝑡) =
1

𝑚
∑ 𝑐𝑖,𝑗

𝑚
𝑖=1 (𝑡)                               (4) 

where 𝑐𝑗(𝑡) indicates the j-th IMF decomposed by EEMD. 

Additionally, the amplitude of the increased white noise 𝐴  and the number of trials 𝑚  in the 

ensemble are two critical parameters for the EEMD analysis. The final standard deviation of the error 𝜀 

adopted by the increased white noise on the EEMD decomposition result is described as follow: 

𝜀 = 𝐴
√𝑚

⁄                                   (5) 

where 𝐴 indicates 0.2 times the standard deviation of the signal, 𝑚 presents 100, as suggested 

in Ref. [15. 

It can be seen that EMD is essentially breaks a complicated down into a number of amplitude and 

frequency modulated (AM/FM) zero-mean MFs. In this way the modulation components induced by 

bearing fault can be more enhanced, which means that the random noise components are suppressed.  

 

2.2 EEMD-Wavelet model 

After applying EEMD for multi-scale decomposition of the signal, the criterion of the scale selection 

based on the mean of standardized accumulated modes (MSAM) is applied to distinguish high-frequency 

IMFs from a limited series of IMFs. The definition of MASM can be expressed as [29]: 

                  ℎ̂𝑚 = 𝑚𝑒𝑎𝑛 [∑ [𝑐𝑗(𝑡) −
𝑚𝑒𝑎𝑛(𝑐𝑗(𝑡))

𝑠𝑡𝑑(𝑐𝑗(𝑡))
]𝑚

𝑗=1 ]      m≪N                 (6) 

If ℎ̂𝑚 deviates from zero, the scale 𝑚 is defined as the sign to discriminate between the high-

frequency and the low-frequency IMFs.  

In addition, in order to eliminate noise in high-frequency IMFs for further improvement of SNR, 

the wavelet threshold (WT) is employed due to its ability of separating signals and noise referred to [30]. 

During the processing of the WT, the Daubechies (db10) is selected as the mother wavelet because of the 

Daubechies family is most similar to the vibration signal of the rolling element bearing [31]. The wavelet 

coefficients 𝑐𝑗̅ given with the hard-threshold and soft-threshold functions are expressed as in reference 

[32]:  

Hard-threshold function: 

𝑐𝑗̅ = {
𝑐𝑗           |𝑐𝑗| ≫ 𝑇

0        |𝑐𝑗| < 𝑇
                                

(7) 

Soft-threshold function: 

𝑐𝑗̅ = {
𝑠𝑖𝑔𝑛(𝑐𝑗)(|𝑐𝑗| − 𝑇)       |𝑐𝑗| ≫ 𝑇

0                                     |𝑐𝑗| < 𝑇
                        

(8) 

where 𝑇 = 𝜎√2𝐼𝑛𝑁 is the universal threshold, 𝜎 and 𝑁 are the standard deviation of the noise 

and the length of the signal. Compared with the hard-threshold function, the soft-threshold function can 

obtain better results for processing the denoised signal [33]. Hence, the soft-threshold function is 

employed in the proposed method. In addition, the soft-threshold noise reduction can effectively maintain 

the integrity of useful signals [34]. The resulting signal is expressed as: 

𝑦̃(𝑡) = ∑ 𝑐𝑗̅(𝑡)𝑚−1
𝑗=1 + ∑ 𝑐𝑗(𝑡)𝑁

𝑗=𝑚 + 𝑟𝑖,𝑁(𝑡)                    (9) 

where 𝑐𝑗̅ are the de-noised high-frequency IMFs by WT. 
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The scheme of EEMD-Wavelet model can be illustrated as Fig.1. 

 

Fig.1. The flowchart of the EEMD-Wavelet model 

3. Modulation Signal Bispectrum  

3.1 A description of MSB method  

MSB is a promising analysis method based on the improvement of the conventional bispectrum [25]. 

It has the merits of suppressing uncoupling frequency components and demodulating modulation 

components for rotating machinery fault diagnosis [25-27]. For a discrete-time signal 𝑥(𝑡)  with 

corresponding discrete Fourier transform 𝑋(𝑓), the MSB can be expressed in the frequency domain as 

[26]: 

𝐵𝑀𝑆(𝑓𝑐 , 𝑓𝑥) = 𝐸 < 𝑋(𝑓𝑐 + 𝑓𝑥)𝑋(𝑓𝑐 − 𝑓𝑥)𝑋∗(𝑓𝑐)𝑋∗(𝑓𝑐) >                    

(10) 

where 𝐵𝑀𝑆(𝑓𝑐, 𝑓𝑥) and 𝐸 <> are the bispectrum of signal 𝑥(𝑡) and expectation operator. The 𝑓𝑐 

and 𝑓𝑥  indicate the carrier frequency and modulating frequency, (𝑓𝑐 + 𝑓𝑥)  and (𝑓𝑐 − 𝑓𝑥)  are the 

higher and lower sideband frequencies, respectively. 

The overall phase of the MSB can be expressed as: 

 ∅𝑀𝑆(𝑓𝑐, 𝑓𝑥) = ∅(𝑓𝑐 + 𝑓𝑥) + ∅(𝑓𝑐 − 𝑓𝑥) − ∅(𝑓𝑐) − ∅(𝑓𝑥)             (11) 

When the two components 𝑓𝑐 and 𝑓𝑥 are coupled, their phases are related as follows: 

{
∅(𝑓𝑐 + 𝑓𝑥) = ∅(𝑓𝑐) + ∅(𝑓𝑥)

∅(𝑓𝑐 − 𝑓𝑥) = ∅(𝑓𝑐) − ∅(𝑓𝑥)
                          (12) 

The substitution of Eq. (12) into Eq. (11) demonstrates that the whole phase of the MSB is zero and 

the MSB amplitude is determined by the product of the four dimensions. Thus, a bispectral peak appears 

at bifrequency (𝑓𝑐, 𝑓𝑥) that considering the two sidebands simultaneously. By contrast, the noise exhibits 

random phases and their amplitude can be suppressed by the expectation average over MSB sets from 

different signal segments. These effects then provide a more accurate and effective representation of the 

modulation characteristics in noisy signals.  
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To quantify the sideband amplitude more exactly, MSB is improved by eliminating the influence of 

𝑓𝑐 using magnitude normalization. The MSB sideband estimator (MSB-SE) is denoted by [27]: 

𝐵𝑀𝑆
𝑆𝐸 (𝑓𝑐, 𝑓𝑥) =

𝐵𝑀𝑆(𝑓𝑐,𝑓𝑥)

√|𝐵𝑀𝑆(𝑓𝑐,0)|
                           (13) 

where 𝐵𝑀𝑆(𝑓𝑐, 0) indicates the squared power spectrum estimation at 𝑓𝑥 = 0. 

A typical analysis result of MSB-SE can be presented as Fig. 2. 

 

Fig.2. The result of the MSB-SE 

3.2 An MSB detector 

According to the analysis results of MSB-SE as shown in Fig.2, the optimal carrier frequency range 

to diagnose the bearing fault is at a given value of 𝑓𝑐 and can be referred to as 𝑓𝑐
𝑏𝑒𝑠𝑡, which indicates a 

maximum 𝐵𝑀𝑆
𝑆𝐸   peak. To get suboptimal 𝑓𝑐  slices, 𝐵𝑀𝑆

𝑆𝐸 (𝑓𝑐
𝑛, 𝑓𝑥)  can be expressed as the compound 

MSB slice B(𝑓𝑐)  as shown in Fig.3, which is counted by averaging the main MSB peaks in the 

incremental orientation of the 𝑓𝑥 [26]: 

                             B(𝑓𝑐) =
1

𝑀−1
∑ 𝐵𝑀𝑆

𝑆𝐸𝑀
𝑚=2 (𝑓𝑐,𝑚∆𝑓)                       (14) 

where ∆𝑓 indicates the frequency resolution in the 𝑓𝑥 orientation. 

 

Fig.3. The compound MSB slice B(𝑓𝑐) 

To obtain results that are more robust, the MSB modulation detector is improved using the average 

of a few suboptimal MSB slices in Fig.3 as marked with ‘*’ and can be expressed in Eq. (15):  

                            B(𝑓𝑥) =
1

𝑁
∑ 𝐵𝑀𝑆

𝑆𝐸 (𝑓𝑐
𝑛 , 𝑓𝑥)𝑁

𝑛=1 (𝑓𝑥 > 0)                     (15) 

where N presents the total number of selected 𝑓𝑐 suboptimal slices (3, in the case of Fig.2), which 

depends on the importance of the peaks themselves. The MSB detector is shown in Fig. 4.  
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Fig.4. Results of the MSB detector 

4. The proposed fault feature extraction method  

4.1 The procedure of the proposed method  

Motivated by the advantages of the EEMD-Wavelet model and MSB, this paper proposed an 

EEMD-Wavelet-MSB method for fault feature extraction of rolling element bearing. The basic idea of 

the EEMD-Wavelet-MSB is illustrated in Fig. 5 and the work is achieved by carrying out the following 

several steps: 

(1) Decompose the raw signal into a few series of IMFs using EEMD.  

(2) Calculate the MSAM value of different decomposition levels of EEMD. 

(3) Judge the MSAM value in the step (2). If the MSAM value significantly deviates from zero at 

the m-th scale, the IMFs before the m-th scale are considered to be high-frequency and the rest 

IMFs are at low-frequency.   

(4) Denoise the high-frequency IMFs using wavelet threshold, which is then combined with the 

low-frequency IMFs to produce the reconstructed signal.   

(5) Extract the fault-related characteristics by applying the MSB to the reconstructed signal. 
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Fig.5. The flowchart of EEMD-Wavelet-MSB  

4.2 Simulated signal analysis  

To validate the effectiveness of the EEMD-Wavelet-MSB, a simulated vibration signal 𝑥(𝑡) for 

outer race fault of rolling element bearing is expressed as follows [26]: 

                {
𝑥(𝑡) = ∑ 𝐴𝑚(𝑡𝑖)

𝑁
𝑚=−𝑁 𝑒−𝛼(𝑡𝑖) cos(𝑤𝑟𝑡𝑖) 𝑢(𝑡𝑖) + 𝑛(𝑡)

𝑡𝑖 = 𝑡 − (𝑚/𝑓0)
               (16) 

where 𝐴𝑚  represents the amplitude of the 𝑚 th fault impulse signal, 𝑁  stands the number of 

impulse, 𝑓0 = 88.5 Hz indicates the fault characteristic frequency, 𝛼  and 𝑤𝑟  are the structural 

damping characteristic and aroused resonance frequency, 𝑢(𝑡)  stands a unite step function, 𝑛(𝑡)  is 

typical Gaussian white noise with a SNR of -7.14 dB. 

 

 (a) 

 

 (b)  

Fig. 6. Simulated fault signal of bearing outer race: (a) waveform (b) spectrum 

Fig. 6 shows the waveform and corresponding spectrum of the simulated bearing fault signal. The 

fault components cannot be revealed from the spectrum in Fig. 6(b) due to the weak impulsive feature is 

merged with strong background noise. The signal is then decomposed into 18 IMFs by EEMD as shown 

in Fig.7. 
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(a)                                  (b)  

 
(c)  

Fig.7. The IMFs decomposed by EEMD for the simulated signal:  

(a) IMF1–IMF6 (b) IMF7–IMF12 (c) IMF13–IMF17 and one residual.  

To accurately divide the IMFs, the MSAM is applied to divide the IMFs into low- and high-

frequency parts. The relationship between the MSAM and scale is shown in Fig. 8. It shows that the 

appropriate scale for discriminating high-frequency from low-frequency IMFs is at 7 as calculated using 

Eq.(6). The high-frequency IMFs (from IMF1 to IMF6) is denoised by WT, the low-frequency IMFs 

(from IMF7 to IMF18 includes the residual signal) and the denoised high-frequency IMFs are then 

combined to produce the reconstructed signal. 

 

Fig.8. Relationship between the scale and MSAM 

The MSB is applied to analyze the reconstructed signal to decompose the modulated components. 

The steps of calculating the MSB are as follows. Firstly, the MSB and sideband estimator are calculated 

using Eq. (10) and (13). Secondly, the MSB slice 𝐵(𝑓𝑐) is calculated using Eq. (14) and the suboptimal 

𝑓𝑐 slices are chosen in Fig. 9 (a). Finally, the MSB detector is calculated using Eq. (15) and the results 

are shown in Fig. 9 (b). It is clearly seen that the MSB detector can clearly identify the fault-related 

characteristic frequency and its harmonics. This indicates that the EEMD-Wavelet-MSB is capable of 

suppressing noise and decomposing the interference modulation components. 
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Fig.9. Analysis results of EEMD-Wavelet-MSB (a) MSB slice (b) MSB detector  

5. Experimental verification 

Two experimental cases were carried out to study the effectiveness of the EEMD-Wavelet-MSB for 

extracting the fault-related characteristic frequency. And the performance of the EEMD-Wavelet-MSB 

is compared with the individual EEMD and MSB during the experimental case studies. 

5.1 Description of the Experiment 

The test platform for fault diagnosis of rolling element bearing is shown in Fig.10. The test rig is 

consisted of an AC motor, a dynamic brake, two piezoelectric accelerometer sensors, supporting bearing 

as well as three flexible coupling. In the experiment, one piezoelectric accelerometer was mounted on 

the motor drive end bearing housing, and the other piezoelectric accelerometer was positioned on the 

bearing housing, which were used to collect the vibration signals. The data sampling frequency is 96 kHz 

and the data length are 1920000 points collected by YE62332B data acquisition system. The fault modes 

include an outer race fault was installed on the motor bearing and an inner race fault was set at the 

supporting bearing as illustrated in Fig. 11 (a) and (b), respectively. The kinematical parameters and fault-

related characteristic frequency of the test bearings are listed in Table 1 and 2. 

 

Fig.10. Rolling element bearing test platform 
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 (a)                                       (b) 

Fig.11. The fault modes: (a) outer race fault (b) inner race fault  

Table 1. Kinematical parameters of the test bearings 

Bearing  

type 

Ball numbers 

d (mm) 

Pitch Diameter 

𝐷𝑚 (mm) 

Ball Number 

z 

Contact Angle 

β 

6206ZZ 9.53 46.4 9 0° 

6008 7.9 54 12 0° 

Table 2. Fault-related characteristic frequency of the test bearings  

Bearing 

type 

Outer race  

 𝑓𝑜 (Hz) 

Inner race   

 𝑓𝑖 (Hz) 

Rolling element 

 𝑓𝑏 (Hz) 

Fundamental cage  

𝑓𝑐 (Hz) 

6206ZZ 89.33 130.99  62.42  9.93  

6008 49.25  65.17  33.60  4.10  

5.2 Fault detection of the motor bearing outer race 

Fig. 12 presents the waveform and its corresponding spectrum of the measured vibration signal of 

the test motor fault bearing. Obviously, the fault-related characteristic frequency 𝑓𝑜 is fused by strong 

background noise and interference components as shown in Fig.12(b).  

 

(a) 

 

 (b)  
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Fig.12. Measured vibration signal of motor fault bearing: (a) waveform (b) spectrum 

The measured motor fault bearing vibration signal is first decomposed into 18 IMFs and one residual 

component by EEMD and the MSAM values are calculated then. Fig. 13 shows the relationship between 

the scale and MSAM. It is seen that the appropriate scale for discriminating of high-frequency and low-

frequency IMFs is 10. The high-frequency IMF (from IMF1to IMF9) is denoised using the wavelet 

threshold, then the low-frequency IMFs (from IMF10 to IMF18 and one residual) and denoised high-

frequency IMFs are reconstructed. The envelope analysis (EA) is employed to analyze the reconstructed 

signal, and the normalized EA result is given in Fig.14. There are many interference frequencies 

displayed around the fault-related characteristic frequency and its harmonics. 

 

Fig.13. Relationship between the scale and MSAM. 

 

Fig.14. Envelope spectrum of the reconstruction signal 

The MSB is then used to process the reconstructed signal to extract fault-related characteristic 

frequency, and the results are shown in Fig. 15. It can be seen that the MSB can clearly identify the fault-

related characteristic frequency and its harmonics with lower interference noise. For comparative 

analysis, the individual MSB is used to analyze the measured vibration signals that are not processed by 

the EEMD-Wavelet model to extract fault-related characteristic frequency and the results are presented 

in Fig. 16. Although MSB analysis results can reveal the fault-related characteristic frequency and its 

harmonics, there are also some impulsive interference components, especially around the higher order 

harmonics. Moreover, the bandwidth is wider than the proposed method. This indicates that the EEMD-

Wavelet-MSB receives more precise results in the fault feature extraction for rolling element bearing 

fault diagnosis. 
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Fig.15. Analysis results of EEMD-Wavelet-MSB (a) MSB slice (b) MSB detector  

    

 

Fig.16. Analysis results of MSB (a) MSB slice (b) MSB detector  

5.3 Fault detection of the supporting bearing inner race 

Fig. 17 illustrates the waveform and spectrum of the measured vibration signal of the test supporting 

fault bearing. The fault-related characteristic frequency is obviously merged with heavy noise and 

difficult to be extracted based on the spectrum as shown in Fig.17(b). 
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(a) 

 

               (b)  

Fig.17. Measured vibration signal of supporting fault bearing : (a) waveform (b) spectrum 

The supporting fault bearing vibration signal is initially decomposed into 19 IMFs and one residual 

component by EEMD and will not be shown in the present study. Fig. 18 shows the relationship between 

the scale and MSAM. It can be found that the appropriate scale for discriminating of low- and high-

frequency IMFs is 10. The high-frequency IMF (from IMF1to IMF9) is denoised using the db 10 wavelet, 

then the low-frequency IMFs (from IMF10 to IMF18 and one residual) and denoised high-frequency 

IMFs are reconstructed. The normalized EA spectrum of the reconstructed signal is presented in Fig.19. 

It can extract the fault-related frequency and its harmonics，but they are mixed with much noise and the 

effect of interference components still exists as shown in Fig.19.  

 

Fig.18. Relationship between the scale and MSAM 
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Fig.19. Envelope spectrum of the reconstruction signal 

The MSB is then used to analyse the reconstructed signal to extract fault-related characteristic 

frequency, the results are shown in Fig. 20. It can be seen from Fig. 20 that the fault-related characteristic 

frequency and its harmonics are obvious. And the bandwidth of the EEMD-Wavelet-MSB is narrower 

than that of individual MSB analysis results as shown in Fig. 21. In contract, individual MSB analysis 

results are mixed with noise and interference components, especially around the higher order harmonics. 

This makes it difficult to extract fault features accurately. The comparative analysis indicate that the 

EEMD-Wavelet-MSB is a more effective and accurate fault feature extraction approach. 

 

 

Fig.20. Analysis results of EEMD-Wavelet-MSB (a) MSB slice (b) MSB detector  
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Fig.21. Analysis results of MSB (a) MSB slice (b) MSB detector  

6. Conclusions 

In this paper, a novel fault feature extraction approach based on EEMD-Wavelet model and MSB is 

proposed for rolling element bearing fault diagnosis. EEMD-Wavelet model is applied as a pre-filter to 

highlight the fault-related impulse components of the vibration signal through suppressing the 

background noise and utilizing the contribution of all IMFs to fault feature extraction. And then MSB is 

explored to extract the fault feature by demodulating the coupling frequency pairs and suppressing the 

uncoupling interference components. The performance and efficiency of the proposed method have been 

verified based on the simulation analysis and two fault diagnosis cases of the rolling element bearing 

inner and outer race. The analysis results show that the proposed method is efficient in the fault feature 

extraction with higher accuracy in comparison with the individual EEMD and MSB analysis. Especially 

the fault characteristic frequencies located in high order harmonics are better enhanced by EEMD-

Wavelet-MSB. Moreover, the bandwidth of the EEMD-Wavelet-MSB for fault feature detection is about 

half the bandwidth of the individual MSB analysis. Therefore, it can be confirmed that the proposed 

method can be regarded as an efficient and accurate technique for fault feature extraction and diagnosis 

of rolling element bearing in early stage. 
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