9 research outputs found

    The role of miR-17-92 in the miRegulatory landscape of Ewing sarcoma

    Get PDF
    MicroRNAs serve to fine-tune gene expression and play an important regulatory role in tissue specific gene networks. The identification and validation of miRNA target genes in a tissue still poses a significant problem since the presence of a seed sequence in the 3'UTR of an mRNA and its expression modulation upon ectopic expression of the miRNA do not reliably predict regulation under physiological conditions. The chimeric oncoprotein EWS-FLI1 is the driving pathogenic force in Ewing sarcoma. MiR-17-92, one of the most potent oncogenic miRNAs, was recently reported to be among the top EWS-FLI1 activated miRNAs. Using a combination of AGO2 pull-down experiments by PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation) and of RNAseq upon miRNA depletion by ectopic sponge expression, we aimed to identify the targetome of miR-17-92 in Ewing sarcoma. Intersecting both datasets we found an enrichment of PAR-CLIP hits for members of the miR-17-92 cluster in the 3'UTRs of genes up-regulated in response to mir-17-92 specific sponge expression. Strikingly, approximately a quarter of these genes annotate to the TGFB/BMP pathway, the majority mapping downstream of SMAD signaling. Testing for SMAD phosphorylation, we identify quiet but activatable TGFB signaling and cell autonomous activity of the BMP pathway resulting in the activation of the stemness regulatory transcriptional repressors ID1 and ID3. Taken together, our findings shed light on the complex miRegulatory landscape of Ewing Sarcoma pointing miR-17-92 as a key node connected to TGFB/BMP pathway.This study was supported in part by the Austrian Science Fund (FWF), [grants 24708-B21 and I1225-B19], and by the 7th framework program of the European Commission, [grant FP7-259348] (‘ASSET’).S

    PICALM Rescues Endocytic Defects Caused by the Alzheimer’s Disease Risk Factor APOE4

    No full text
    The ε4 allele of apolipoprotein E (APOE4) is a genetic risk factor for many diseases, including late-onset Alzheimer's disease (AD). We investigate the cellular consequences of APOE4 in human iPSC-derived astrocytes, observing an endocytic defect in APOE4 astrocytes compared with their isogenic APOE3 counterparts. Given the evolutionarily conserved nature of endocytosis, we built a yeast model to identify genetic modifiers of the endocytic defect associated with APOE4. In yeast, only the expression of APOE4 results in dose-dependent defects in both endocytosis and growth. We discover that increasing expression of the early endocytic adaptor protein Yap1802p, a homolog of the human AD risk factor PICALM, rescues the APOE4-induced endocytic defect. In iPSC-derived human astrocytes, increasing expression of PICALM similarly reverses endocytic disruptions. Our work identifies a functional interaction between two AD genetic risk factors—APOE4 and PICALM—centered on the conserved biological process of endocytosis

    Universal toxin-based selection for precise genome engineering in human cells

    Full text link
    Prokaryotic restriction enzymes, recombinases and Cas proteins are powerful DNA engineering and genome editing tools. However, in many primary cell types, the efficiency of genome editing remains low, impeding the development of gene- and cell-based therapeutic applications. A safe strategy for robust and efficient enrichment of precisely genetically engineered cells is urgently required. Here, we screen for mutations in the receptor for Diphtheria Toxin (DT) which protect human cells from DT. Selection for cells with an edited DT receptor variant enriches for simultaneously introduced, precisely targeted gene modifications at a second independent locus, such as nucleotide substitutions and DNA insertions. Our method enables the rapid generation of a homogenous cell population with bi-allelic integration of a DNA cassette at the selection locus, without clonal isolation. Toxin-based selection works in both cancer-transformed and non-transformed cells, including human induced pluripotent stem cells and human primary T-lymphocytes, as well as it is applicable also in vivo, in mice with humanized liver. This work represents a flexible, precise, and efficient selection strategy to engineer cells using CRISPR-Cas and base editing systems

    A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo

    No full text
    Abstract Streptococcus pyogenes Cas9 (SpCas9) and derived enzymes are widely used as genome editors, but their promiscuous nuclease activity often induces undesired mutations and chromosomal rearrangements. Several strategies for mapping off-target effects have emerged, but they suffer from limited sensitivity. To increase the detection sensitivity, we develop an off-target assessment workflow that uses Duplex Sequencing. The strategy increases sensitivity by one order of magnitude, identifying previously unknown SpCas9’s off-target mutations in the humanized PCSK9 mouse model. To reduce off-target risks, we perform a bioinformatic search and identify a high-fidelity Cas9 variant of the II-B subfamily from Parasutterella secunda (PsCas9). PsCas9 shows improved specificity as compared to SpCas9 across multiple tested sites, both in vitro and in vivo, including the PCSK9 site. In the future, while PsCas9 will offer an alternative to SpCas9 for research and clinical use, the Duplex Sequencing workflow will enable a more sensitive assessment of Cas9 editing outcomes

    Universal toxin-based selection for precise genome engineering in human cells

    No full text
    Abstract Prokaryotic restriction enzymes, recombinases and Cas proteins are powerful DNA engineering and genome editing tools. However, in many primary cell types, the efficiency of genome editing remains low, impeding the development of gene- and cell-based therapeutic applications. A safe strategy for robust and efficient enrichment of precisely genetically engineered cells is urgently required. Here, we screen for mutations in the receptor for Diphtheria Toxin (DT) which protect human cells from DT. Selection for cells with an edited DT receptor variant enriches for simultaneously introduced, precisely targeted gene modifications at a second independent locus, such as nucleotide substitutions and DNA insertions. Our method enables the rapid generation of a homogenous cell population with bi-allelic integration of a DNA cassette at the selection locus, without clonal isolation. Toxin-based selection works in both cancer-transformed and non-transformed cells, including human induced pluripotent stem cells and human primary T-lymphocytes, as well as it is applicable also in vivo, in mice with humanized liver. This work represents a flexible, precise, and efficient selection strategy to engineer cells using CRISPR-Cas and base editing systems
    corecore