76 research outputs found

    First evidence of multiple populations along the AGB from Str\"omgren photometry

    Full text link
    Spectroscopic studies have demonstrated that nearly all Galactic globular clusters (GCs) harbour multiple stellar populations with different chemical compositions. Moreover, colour-magnitude diagrams based exclusively on Str\"omgrem photometry have allowed us to identify and characterise multiple populations along the RGB of a large number of clusters. In this paper we show for the first time that Str\"omgren photometry is also very effcient at identifying multiple populations along the AGB, and demonstrate that the AGB of M3, M92, NGC362, NGC1851, and NGC6752 are not consistent with a single stellar population. We also provide a catalogue of RGB and AGB stars photometrically identified in these clusters for further spectroscopic follow-up studies.We combined photometry and elemental abundances from the literature for RGB and AGB stars in NGC6752 where the presence of multiple populations along the AGB has been widely debated. We find that, while the MS, SGB, and RGB host three stellar populations with different helium and light element abundances, only two populations of AGB stars are present in the cluster. These results are consistent with standard evolutionary theory.Comment: 9 pages, 3 figures, 1 table in the main article, 3 tables in the appendix of which 2 tables containing coordinates and photometry of photometrically identified RGB and AGB star

    First evidence of multiple populations along the AGB from Strömgren photometry

    Get PDF
    Spectroscopic studies have demonstrated that nearly all Galactic globular clusters (GCs) harbour multiple stellar populations with different chemical compositions. Moreover, colour-magnitude diagrams based exclusively on Strömgrem photometry have allowed us to identify and characterise multiple populations along the RGB of a large number of clusters. In this paper we show for the first time that Strömgren photometry is also very efficient at identifying multiple populations along the AGB, and demonstrate that the AGB of M 3, M 92, NGC 362, NGC 1851, and NGC 6752 are not consistent with a single stellar population. We also provide a catalogue of RGB and AGB stars photometrically identified in these clusters for further spectroscopic follow-up studies. We combined photometry and elemental abundances from the literature for RGB and AGB stars in NGC 6752 where the presence of multiple populations along the AGB has been widely debated. We find that, while the MS, SGB, and RGB host three stellar populations with different helium and light element abundances, only two populations of AGB stars are present in the cluster. These results are consistent with standard evolutionary theory.P.G. acknowledges support from grant No. 2011- 5042 from the Swedish Research Council. S.F acknowledge the grant The New Milky Way from the Knut and Alice Wallenberg Foundation. P.G. and S.F. acknowledges support from the Swedish National Space Board. AS acknowledges support from MINECO (ESP2015-66134-R) and Generalitat de Catalunya (SGR2014-1458). L.C gratefully acknowledge support from the Australian Research Council (grants DP150100250, FT160100402). A. P. M. acknowledges support by the Australian Research Council through Discovery Early Career Researcher Award DE150101816

    Tuning exchange bias

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.The exchange bias shift of the hysteresis loop, HE, in antiferromagnetic/ferromagnetic layer systems can be easily controlled (within certain limits) by cooling in zero field from different magnetization states above the antiferromagnetic NĂ©el temperature, TN. This indicates that for moderate cooling fields, HE is determined by the magnetization state of the ferromagnet at TN, and not by the strength of the cooling field

    The LUMBA UVES stellar parameter pipeline

    Get PDF
    Context. The Gaia-ESO Survey has taken high-quality spectra of a subset of 100 000 stars observed with the Gaia spacecraft. The goal for this subset is to derive chemical abundances for these stars that will complement the astrometric data collected by Gaia. Deriving the chemical abundances requires that the stellar parameters be determined. Aims. We present a pipeline for deriving stellar parameters from spectra observed with the FLAMES-UVES spectrograph in its standard fibre-fed mode centred on 580 nm, as used in the Gaia-ESO Survey. We quantify the performance of the pipeline in terms of systematic offsets and scatter. In doing so, we present a general method for benchmarking stellar parameter determination pipelines. Methods. Assuming a general model of the errors in stellar parameter pipelines, together with a sample of spectra of stars whose stellar parameters are known from fundamental measurements and relations, we use a Markov chain Monte Carlo method to quantitatively test the pipeline. Results. We find that the pipeline provides parameter estimates with systematic errors on effective temperature below 100 K, on surface gravity below 0.1 dex, and on metallicity below 0.05 dex for the main spectral types of star observed in the Gaia-ESO Survey and tested here. The performance on red giants is somewhat lower. Conclusions. The pipeline performs well enough to fulfil its intended purpose within the Gaia-ESO Survey. It is also general enough that it can be put to use on spectra from other surveys or other spectrographs similar to FLAMES-UVES.Parts of this research were conducted by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013. PG thanks the European Science Foundation (ESF) for support in the framework of EuroGENESIS. KL acknowledges funds from the Alexander von Humboldt Foundation in the framework of the Sofja Kovalevskaja Award endowed by the Federal Ministry of Education and Research and funds from the Swedish Research Council (Grant no. 2015-00415_3) and Marie Skłodowska Curie Actions (Cofund Project INCA 600398). This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France

    Exchange bias effect in alloys and compounds

    Full text link
    The phenomenology of exchange bias effects observed in structurally single-phase alloys and compounds but composed of a variety of coexisting magnetic phases such as ferromagnetic, antiferromagnetic, ferrimagnetic, spin-glass, cluster-glass and disordered magnetic states are reviewed. The investigations on exchange bias effects are discussed in diverse types of alloys and compounds where qualitative and quantitative aspects of magnetism are focused based on macroscopic experimental tools such as magnetization and magnetoresistance measurements. Here, we focus on improvement of fundamental issues of the exchange bias effects rather than on their technological importance

    The Gaia-ESO Survey : The analysis of high-resolution UVES spectra of FGK-type stars

    Get PDF
    Date of Acceptance: 01/09/2014Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 105 stars and high-resolution UVES spectra for about 5000 stars. With UVES, the Survey has already observed 1447 FGK-type stars. Aims. These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO second internal release and will be part of its first public release of advanced data products. Methods. The final parameter scale is tied to the scale defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. In addition, a set of open and globular clusters is used to evaluate the physical soundness of the results. Each of the implemented methodologies is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted medians of those from the individual methods. Results. The recommended results successfully reproduce the atmospheric parameters of the benchmark stars and the expected Teff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55 K for Teff, 0.13 dex for log g and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for Teff, 0.10-0.25 dex for log g and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex. Conclusions. The Gaia-ESO sample of high-resolution spectra of FGK-type stars will be among the largest of its kind analyzed in a homogeneous way. The extensive list of elemental abundances derived in these stars will enable significant advances in the areas of stellar evolution and Milky Way formation and evolution.Peer reviewe
    • …
    corecore