495 research outputs found

    Effect of deconfinement on resonant transport in quantum wires

    Full text link
    The effect of deconfinement due to finite band offsets on transport through quantum wires with two constrictions is investigated. It is shown that the increase in resonance linewidth becomes increasingly important as the size is reduced and ultimately places an upper limit on the energy (temperature) scale for which resonances may be observed.Comment: 6 pages, 6 postscript files with figures; uses REVTe

    Tight-Binding model for semiconductor nanostructures

    Full text link
    An empirical scpa3s_cp^3_a tight-binding (TB) model is applied to the investigation of electronic states in semiconductor quantum dots. A basis set of three pp-orbitals at the anions and one ss-orbital at the cations is chosen. Matrix elements up to the second nearest neighbors and the spin-orbit coupling are included in our TB-model. The parametrization is chosen so that the effective masses, the spin-orbit-splitting and the gap energy of the bulk CdSe and ZnSe are reproduced. Within this reduced scpa3s_cp_a^3 TB-basis the valence (p-) bands are excellently reproduced and the conduction (s-) band is well reproduced close to the Γ\Gamma-point, i.e. near to the band gap. In terms of this model much larger systems can be described than within a (more realistic) sp3ssp^3s^*-basis. The quantum dot is modelled by using the (bulk) TB-parameters for the particular material at those sites occupied by atoms of this material. Within this TB-model we study pyramidal-shaped CdSe quantum dots embedded in a ZnSe matrix and free spherical CdSe quantum dots (nanocrystals). Strain-effects are included by using an appropriate model strain field. Within the TB-model, the strain-effects can be artifically switched off to investigate the infuence of strain on the bound electronic states and, in particular, their spatial orientation. The theoretical results for spherical nanocrystals are compared with data from tunneling spectroscopy and optical experiments. Furthermore the influence of the spin-orbit coupling is investigated

    Multi-Exciton Spectroscopy of a Single Self Assembled Quantum Dot

    Get PDF
    We apply low temperature confocal optical microscopy to spatially resolve, and spectroscopically study a single self assembled quantum dot. By comparing the emission spectra obtained at various excitation levels to a theoretical many body model, we show that: Single exciton radiative recombination is very weak. Sharp spectral lines are due to optical transitions between confined multiexcitonic states among which excitons thermalize within their lifetime. Once these few states are fully occupied, broad bands appear due to transitions between states which contain continuum electrons.Comment: 12 pages, 4 figures, submitted for publication on Jan,28 199

    A pseudopotential study of electron-hole excitations in colloidal, free-standing InAs quantum dots

    Full text link
    Excitonic spectra are calculated for free-standing, surface passivated InAs quantum dots using atomic pseudopotentials for the single-particle states and screened Coulomb interactions for the two-body terms. We present an analysis of the single particle states involved in each excitation in terms of their angular momenta and Bloch-wave parentage. We find that (i) in agreement with other pseudopotential studies of CdSe and InP quantum dots, but in contrast to k.p calculations, dot states wavefunction exhibit strong odd-even angular momentum envelope function mixing (e.g. ss with pp) and large valence-conduction coupling. (ii) While the pseudopotential approach produced very good agreement with experiment for free-standing, colloidal CdSe and InP dots, and for self-assembled (GaAs-embedded) InAs dots, here the predicted spectrum does {\em not} agree well with the measured (ensemble average over dot sizes) spectra. (1) Our calculated excitonic gap is larger than the PL measure one, and (2) while the spacing between the lowest excitons is reproduced, the spacings between higher excitons is not fit well. Discrepancy (1) could result from surface states emission. As for (2), agreement is improved when account is taken of the finite size distribution in the experimental data. (iii) We find that the single particle gap scales as R1.01R^{-1.01} (not R2R^{-2}), that the screened (unscreened) electron-hole Coulomb interaction scales as R1.79R^{-1.79} (R0.7R^{-0.7}), and that the eccitonic gap sclaes as R0.9R^{-0.9}. These scaling laws are different from those expected from simple models.Comment: 12 postscript figure

    Coulomb Blockade Resonances in Quantum Wires

    Full text link
    The conductance through a quantum wire of cylindrical cross section and a weak bulge is solved exactly for two electrons within the Landauer-Buettiker formalism. We show that this 'open' quantum dot exhibits spin-dependent Coulomb blockade resonances resulting in two anomalous structure on the rising edge to the first conductance plateau, one near 0.25(2e^2/h), related to a singlet resonance, and one near 0.7(2e^2/h), related to a triplet resonance. These resonances are generic and robust, occurring for other types of quantum wire and surviving to temperatures of a few degrees.Comment: 5 pages, 3 postscript files with figures; uses REVTe

    Effect of quantum confinement on exciton-phonon interactions

    Get PDF
    We investigate the homogeneous linewidth of localized type-I excitons in type-II GaAs/AlAs superlattices. These localizing centers represent the intermediate case between quasi-two-dimensional (Q2D) and quasi-zero-dimensional localizations. The temperature dependence of the homogeneous linewidth is obtained with high precision from micro-photoluminescence spectra. We confirm the reduced interaction of the excitons with their environment with decreasing dimensionality except for the coupling to LO-phonons. The low-temperature limit for the linewidth of these localized excitons is five times smaller than that of Q2D excitons. The coefficient of exciton-acoustic-phonon interaction is 5 ~ 6 times smaller than that of Q2D excitons. An enhancement of the average exciton-LO-phonon interaction by localization is found in our sample. But this interaction is very sensitive to the detailed structure of the localizing centers.Comment: 6 pages, 4 figure

    Patient Referral Patterns and the Spread of Hospital-Acquired Infections through National Health Care Networks

    Get PDF
    Rates of hospital-acquired infections, such as methicillin-resistant Staphylococcus aureus (MRSA), are increasingly used as quality indicators for hospital hygiene. Alternatively, these rates may vary between hospitals, because hospitals differ in admission and referral of potentially colonized patients. We assessed if different referral patterns between hospitals in health care networks can influence rates of hospital-acquired infections like MRSA. We used the Dutch medical registration of 2004 to measure the connectedness between hospitals. This allowed us to reconstruct the network of hospitals in the Netherlands. We used mathematical models to assess the effect of different patient referral patterns on the potential spread of hospital-acquired infections between hospitals, and between categories of hospitals (University medical centers, top clinical hospitals and general hospitals). University hospitals have a higher number of shared patients than teaching or general hospitals, and are therefore more likely to be among the first to receive colonized patients. Moreover, as the network is directional towards university hospitals, they have a higher prevalence, even when infection control measures are equally effective in all hospitals. Patient referral patterns have a profound effect on the spread of health care-associated infections like hospital-acquired MRSA. The MRSA prevalence therefore differs between hospitals with the position of each hospital within the health care network. Any comparison of MRSA rates between hospitals, as a benchmark for hospital hygiene, should therefore take the position of a hospital within the network into account

    Ferromagnetic transition metal implanted ZnO: a diluted magnetic semiconductor?

    Full text link
    Recently theoretical works predict that some semiconductors (e.g. ZnO) doped with magnetic ions are diluted magnetic semiconductors (DMS). In DMS magnetic ions substitute cation sites of the host semiconductor and are coupled by free carriers resulting in ferromagnetism. One of the main obstacles in creating DMS materials is the formation of secondary phases because of the solid-solubility limit of magnetic ions in semiconductor host. In our study transition metal ions were implanted into ZnO single crystals with the peak concentrations of 0.5-10 at.%. We established a correlation between structural and magnetic properties. By synchrotron radiation X-ray diffraction (XRD) secondary phases (Fe, Ni, Co and ferrite nanocrystals) were observed and have been identified as the source for ferromagnetism. Due to their different crystallographic orientation with respect to the host crystal these nanocrystals in some cases are very difficult to be detected by a simple Bragg-Brentano scan. This results in the pitfall of using XRD to exclude secondary phase formation in DMS materials. For comparison, the solubility of Co diluted in ZnO films ranges between 10 and 40 at.% using different growth conditions pulsed laser deposition. Such diluted, Co-doped ZnO films show paramagnetic behaviour. However, only the magnetoresistance of Co-doped ZnO films reveals possible s-d exchange interaction as compared to Co-implanted ZnO single crystals.Comment: 27 pages, 8 figure

    Equilibrium shapes and energies of coherent strained InP islands

    Get PDF
    The equilibrium shapes and energies of coherent strained InP islands grown on GaP have been investigated with a hybrid approach that has been previously applied to InAs islands on GaAs. This combines calculations of the surface energies by density functional theory and the bulk deformation energies by continuum elasticity theory. The calculated equilibrium shapes for different chemical environments exhibit the {101}, {111}, {\=1\=1\=1} facets and a (001) top surface. They compare quite well with recent atomic-force microscopy data. Thus in the InP/GaInP-system a considerable equilibration of the individual islands with respect to their shapes can be achieved. We discuss the implications of our results for the Ostwald ripening of the coherent InP islands. In addition we compare strain fields in uncapped and capped islands.Comment: 10 pages including 6 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
    corecore