89 research outputs found

    Inter-annual carbon isotope analysis of tree-rings by laser ablation

    Get PDF
    The stable carbon isotopic analysis of tree-rings for environmental, plant physiological and archaeological applications using conventional methods is occasionally limited by physical constraints (narrow rings) or administrative concerns (requirement for non-destructive sampling) that prevent researcher access to scientifically valuable wood samples. Analysis of such archives by laser-ablation can potentially address these issues and facilitate access to restricted archives. Smaller quantities of wood are required for analysis by laser ablation, hence the approach may be considered less-invasive and is virtually non-destructive compared to standard preparation methods. High levels of intra-annual isotopic variability reported elsewhere mean that a single measurement may not faithfully represent the inter-annual isotopic signal, so before such an approach can be used with confidence it is necessary to compare the stable carbon isotopic data produced using these two methods. This paper presents stable carbon isotope (δ13C) data from the resin-extracted wood of dated Scots Pine (Pinus sylvestris L.) tree-rings analysed using a modified Schulze-type laser-ablation system with results obtained using conventional manual sampling and analysis of α-cellulose prepared from the same tree-ring groups. The laser sampling system is found to perform very well against established more invasive methods. High correlations are observed between the methods for both raw and Suess corrected data (r > 0.90 n =50). These results highlight the potential for using laser-sampling to support the development of long isotope chronologies, for sampling narrow rings or for pre-screening cores prior to analysis using more detailed or labour intensive methods.201

    Cloud Cover Feedback Moderates Fennoscandian Summer Temperature Changes Over the Past 1,000 Years

    Get PDF
    Northern Fennoscandia has experienced little summer warming over recent decades, in 24 contrast to the hemispheric trend, which is strongly linked to greenhouse gas emissions. A likely25 explanation is the feedback between cloud cover and temperature. We establish the long- and26 short-term relationship between summer cloud cover and temperature over Northern27 Fennoscandia, by analysing meteorological and proxy climate data. We identify opposing28 feedbacks operating at different timescales. At short timescales, dominated by internal29 variability, the cloud cover-temperature feedback is negative; summers with increased cloud30 cover are cooler and sunny summers are warmer. However, over longer timescales, at which31 forced climate changes operate, this feedback is positive, rising temperatures causing increased32 regional cloud cover and vice versa. This has occurred both during warm (Medieval Climate33 Anomaly and at present) and cool (Little Ice Age) periods. This two-way feedback relationship34 therefore moderates Northern Fennoscandian temperatures during both warm and cool35 hemispheric periods

    Reconstructing 800 years of summer temperatures in Scotland from tree rings

    Get PDF
    We thank The Carnegie Trust for the Universities of Scotland for providing funding for Miloš Rydval’s PhD. The Scottish pine network expansion has been an ongoing task since 2007 and funding must be acknowledged to the following projects: EU project ‘Millennium’ (017008-2), Leverhulme Trust project ‘RELiC: Reconstructing 8000 years of Environmental and Landscape change in the Cairngorms (F/00 268/BG)’ and the NERC project ‘SCOT2K: Reconstructing 2000 years of Scottish climate from tree rings (NE/K003097/1)’.This study presents a summer temperature reconstruction using Scots pine tree-ring chronologies for Scotland allowing the placement of current regional temperature changes in a longer-term context. ‘Living-tree’ chronologies were extended using ’subfossil’ samples extracted from nearshore lake sediments resulting in a composite chronology > 800 years in length. The North Cairngorms (NCAIRN) reconstruction was developed from a set of composite blue intensity high-pass and ring-width low-pass chronologies with a range of detrending and disturbance correction procedures. Calibration against July-August mean temperature explains 56.4% of the instrumental data variance over 1866-2009 and is well verified. Spatial correlations reveal strong coherence with temperatures over the British Isles, parts of western Europe, southern Scandinavia and northern parts of the Iberian Peninsula. NCAIRN suggests that the recent summer-time warming in Scotland is likely not unique when compared to multi-decadal warm periods observed in the 1300s, 1500s, and 1730s, although trends before the mid-16th century should be interpreted with some caution due to greater uncertainty. Prominent cold periods were identified from the 16th century until the early 1800s – agreeing with the so-called Little Ice Age observed in other tree-ring reconstructions from Europe - with the 1690s identified as the coldest decade in the record. The reconstruction shows a significant cooling response one year following volcanic eruptions although this result is sensitive to the datasets used to identify such events. In fact, the extreme cold (and warm) years observed in NCAIRN appear more related to internal forcing of the summer North Atlantic Oscillation.Publisher PDFPeer reviewe

    Pervasive Growth Reduction in Norway Spruce Forests following Wind Disturbance

    Get PDF
    Background: In recent decades the frequency and severity of natural disturbances by e.g., strong winds and insect outbreaks has increased considerably in many forest ecosystems around the world. Future climate change is expected to further intensify disturbance regimes, which makes addressing disturbances in ecosystem management a top priority. As a prerequisite a broader understanding of disturbance impacts and ecosystem responses is needed. With regard to the effects of strong winds – the most detrimental disturbance agent in Europe – monitoring and management has focused on structural damage, i.e., tree mortality from uprooting and stem breakage. Effects on the functioning of trees surviving the storm (e.g., their productivity and allocation) have been rarely accounted for to date. Methodology/Principal Findings: Here we show that growth reduction was significant and pervasive in a 6.79?million hectare forest landscape in southern Sweden following the storm Gudrun (January 2005). Wind-related growth reduction in Norway spruce (Picea abies (L.) Karst.) forests surviving the storm exceeded 10 % in the worst hit regions, and was closely related to maximum gust wind speed (R 2 = 0.849) and structural wind damage (R 2 = 0.782). At the landscape scale, windrelated growth reduction amounted to 3.0 million m 3 in the three years following Gudrun. It thus exceeds secondary damage from bark beetles after Gudrun as well as the long-term average storm damage from uprooting and stem breakage in Sweden

    Causes and Consequences of Past and Projected Scandinavian Summer Temperatures, 500–2100 AD

    Get PDF
    Tree rings dominate millennium-long temperature reconstructions and many records originate from Scandinavia, an area for which the relative roles of external forcing and internal variation on climatic changes are, however, not yet fully understood. Here we compile 1,179 series of maximum latewood density measurements from 25 conifer sites in northern Scandinavia, establish a suite of 36 subset chronologies, and analyse their climate signal. A new reconstruction for the 1483–2006 period correlates at 0.80 with June–August temperatures back to 1860. Summer cooling during the early 17th century and peak warming in the 1930s translate into a decadal amplitude of 2.9°C, which agrees with existing Scandinavian tree-ring proxies. Climate model simulations reveal similar amounts of mid to low frequency variability, suggesting that internal ocean-atmosphere feedbacks likely influenced Scandinavian temperatures more than external forcing. Projected 21st century warming under the SRES A2 scenario would, however, exceed the reconstructed temperature envelope of the past 1,500 years

    Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE

    Get PDF
    This study was funded by the WSL-internal COSMIC project (5233.00148.001.01), the ETHZ (Laboratory of Ion Beam Physics), the Swiss National Science Foundation (SNF Grant 200021L_157187/1), and as the Czech Republic Grant Agency project no. 17-22102s.Though tree-ring chronologies are annually resolved, their dating has never been independently validated at the global scale. Moreover, it is unknown if atmospheric radiocarbon enrichment events of cosmogenic origin leave spatiotemporally consistent fingerprints. Here we measure the 14C content in 484 individual tree rings formed in the periods 770–780 and 990–1000 CE. Distinct 14C excursions starting in the boreal summer of 774 and the boreal spring of 993 ensure the precise dating of 44 tree-ring records from five continents. We also identify a meridional decline of 11-year mean atmospheric radiocarbon concentrations across both hemispheres. Corroborated by historical eye-witness accounts of red auroras, our results suggest a global exposure to strong solar proton radiation. To improve understanding of the return frequency and intensity of past cosmic events, which is particularly important for assessing the potential threat of space weather on our society, further annually resolved 14C measurements are needed.Publisher PDFPeer reviewe

    Multispectral analysis of Northern Hemisphere temperature records over the last five millennia

    Full text link
    Aiming to describe spatio-temporal climate variability on decadal-to-centennial time scales and longer, we analyzed a data set of 26 proxy records extending back 1,000–5,000 years; all records chosen were calibrated to yield temperatures. The seven irregularly sampled series in the data set were interpolated to a regular grid by optimized methods and then two advanced spectral methods—namely singular-spectrum analysis (SSA) and the continuous wavelet transform—were applied to individual series to separate significant oscillations from the high noise background. This univariate analysis identified several common periods across many of the 26 proxy records: a millennial trend, as well as oscillations of about 100 and 200 years, and a broad peak in the 40–70-year band. To study common NH oscillations, we then applied Multichannel SSA. Temperature variations on time scales longer than 600 years appear in our analysis as a dominant trend component, which shows climate features consistent with the Medieval Warm Period and the Little Ice Age. Statistically significant NH-wide peaks appear at 330, 250 and 110 years, as well as in a broad 50–80-year band. Strong variability centers in several bands are located around the North Atlantic basin and are in phase opposition between Greenland and Western Europe
    corecore