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A B S T R A C T

The stable carbon isotopic analysis of tree-rings for environmental, plant physiological and archaeological ap-
plications using conventional methods is occasionally limited by physical constraints (narrow rings) or ad-
ministrative concerns (requirement for non-destructive sampling) that prevent researcher access to scientifically
valuable wood samples. Analysis of such archives by laser-ablation can potentially address these issues and
facilitate access to restricted archives. Smaller quantities of wood are required for analysis by laser ablation,
hence the approach may be considered less-invasive and is virtually non-destructive compared to standard
preparation methods. High levels of intra-annual isotopic variability reported elsewhere mean that a single
measurement may not faithfully represent the inter-annual isotopic signal, so before such an approach can be
used with confidence it is necessary to compare the stable carbon isotopic data produced using these two
methods. This paper presents stable carbon isotope (δ13C) data from the resin-extracted wood of dated Scots Pine
(Pinus sylvestris L.) tree-rings analysed using a modified Schulze-type laser-ablation system with results obtained
using conventional manual sampling and analysis of α-cellulose prepared from the same tree-ring groups. The
laser sampling system is found to perform very well against established more invasive methods. High correla-
tions are observed between the methods for both raw and Suess corrected data (r > 0.90 n = 50). These results
highlight the potential for using laser-sampling to support the development of long isotope chronologies, for
sampling narrow rings or for pre-screening cores prior to analysis using more detailed or labour intensive
methods.

1. Introduction, background & rationale

Since the advent of modern dendroclimatology in the late 19th and
early 20th century (Schweingruber, 1988 and references therein) vast
archives of increment cores and X-ray densitometry samples have been
assembled by tree-ring researchers worldwide in the quest to answer a
myriad of cultural, environmental, and archaeological questions. The
potential for these samples to provide further environmental informa-
tion through their chemical analysis remains an attractive possibility
and one beyond their original intended use. However, such work has
rarely been attempted due to the unique properties of the archive and
the destructive nature of the analytical processes typically employed
(Loader et al., 2008).

Sampling tree-rings by laser ablation is an establishing technique in
isotope dendroclimatology and provides an essentially non-destructive
means for accessing elemental and isotopic information from wood
samples (Hoffmann et al., 1994; Prohaska et al., 1998; Wieser and

Brand, 1999; Schulze et al., 2004; Skomarkova et al., 2006; Vaganov
et al., 2009; Schollaen et al., 2014; Rinne et al., 2015; Soudant et al.,
2016). The most common application of laser-sampling is to investigate
intra-annual isotopic variability across individual tree-rings or the de-
tection of rhythmic trends in ringless trees to elucidate plant physio-
logical processes related to short-term environmental changes. High-
resolution (intra-annual) sampling of tree-rings by manual sub-division,
microtoming, or micro-milling has previously identified large (c. 3‰)
quasi-rhythmic intra-annual isotopic variability in tree-rings (Wilson
and Grinsted, 1977; Ogle and McCormac, 1994; Loader et al., 1995,
Kagawa et al., 2002; Helle and Schleser, 2004; Evans and Schrag, 2004;
Poussart et al., 2004, 2006; Poussart and Schrag, 2005; Anchukaitis
et al., 2008; Dodd et al., 2008; Ogée et al., 2009; Schubert and Jahren,
2011; Xu et al., 2015; Soudant et al., 2016). The use of laser-sampling
has greatly facilitated the production of such series and the potential for
improved replication.

A second and less common application of laser sampling is the
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analysis of small-diameter cores, rare or narrow-ringed samples, which
are not normally suitable for manual sampling and cellulose isolation
techniques due to their small size or high value. Laser sampling of these
series can provide a means for developing annually-resolved stable
isotope chronologies from such challenging samples or to pre-screen
cores for representative or coherent behaviour prior to investing more
expensive or labour intensive methods (e.g.Waterhouse et al., 2013). As
only very small amounts of material are removed for analysis by laser
ablation, the sample remains largely intact, and for rare samples and
those of archaeological significance, may be returned to the archive
after analysis, which represents a significant advantage to both archi-
vists and researcher. However, given the high level of intra-annual
carbon isotopic variability preserved within individual tree-rings (c.
3‰) it is necessary to evaluate whether simple “one shot” laser sam-
pling at annual resolution is capable of providing a representative an-
nual signal. This paper reports results from a comparison of stable
carbon isotopes measured on annual tree-rings using a Schulze-type
laser sampling system with series of carbon isotope data from annually-
resolved tree-rings prepared and measured using conventional
methods.

2. Method, sample preparation and chronology development

To evaluate the potential of the approach for the development of
long isotope chronologies and to compare the signal from laser sam-
pling with data from conventional manual preparation and analysis of
tree-ring cellulose, four dendrochronologically dated Scots pine (Pinus
sylvestris L.) trees between 250 and 180 years old from the Torneträsk
region of northern Sweden were sampled (68.10–68.30°N,
19.40–20.20°E 350–450 m a.s.l.) (Loader et al., 2013). In preparing
samples for laser analysis, an attempt was made to reproduce broadly
the sample preparation protocol for X-ray densitometry, as a significant
archive of densitometry laths has been developed by laboratories that
might prove useful for future isotopic analyses (Grudd, 2008). Radial
samples were cut from each tree using a hand-saw and further sub-
divided into 2 mm thick laths cut using a twin-bladed saw. The resins in
each lath were removed by reflux in hot ethanol over a period of 50 h
using a Soxhlet apparatus and repeatedly washed with boiling deio-
nised water prior to air drying. The resulting resin-extracted laths were
then gently surfaced using abrasive paper to facilitate dating and ring
identification in the laser chamber. Similar results to sanding can be
obtained using a razor blade to expose the cell walls and ring bound-
aries. Each lath was then trimmed to a shorter section (max. length
2 cm) to enable it to be fitted into the sample chamber with a sample of
IAEA-C3 holocellulose standard. Finer subdivision of samples into thin
strips approximately 4 mm wide (similar in dimension to a match stick)
is possible and enables multiple core samples to be loaded into the
chamber if desired (Fig. 1).

Conventional analyses were performed on radii cut from the same
trees, surfaced using abrasive paper and the same group of dated tree-
rings (1900–1950 CE) manually subdivided as thin slivers using a
scalpel and dissecting microscope. Cellulose was prepared using stan-
dard methods (Loader et al., 1997; Rinne et al., 2005) and the sample
material (comprising both early- and late-wood) homogenised using a
Hielscher-type ultrasonic probe (Laumer et al., 2009). Samples were
freeze-dried prior to weighing 0.30–0.35 mg of the dry cellulose into tin

foil capsules for carbon isotope analyses by combustion on-line using a
Sercon GSL elemental analyser and 20/20 isotope ratio mass spectro-
meter. Analytical precision is typically 0.10‰ (Boettger et al., 2007;
Loader et al., 2013).

The laser ablation system used is a variant on the Schulze-type
system and comprises three elements (laser ablation, combustion in-
terface, mass spectrometer). The laser is a 213 nm wavelength UV laser
ablation platform (UP-213 New Wave/ESI). The UP-213 system is
software controlled enabling the user to select different ablation modes,
laser power, sampling resolution (spot size) etc. A 50 mm diameter
sample chamber is linked to the combustion unit via 6 mm outer dia-
meter (OD) and 3 mm internal diameter (ID) Tygon™ tubing through
which helium is passed as a carrier gas at 44 ml/min< 2 PSI.

The combustion interface comprises a 500 mm length (6 mm OD,
4 mm ID) quartz tube packed with chromium(III) oxide and quartz fibre
wool. The tube is heated to 600 °C and the chrome oxide acts as the
oxygen source for conversion of the wood powder to CO2 and water
vapour. The water vapour is removed by a Nafion™ drier and chemical
magnesium perchlorate water trap. The remaining CO2 and non-con-
densable gases are then passed through a stainless steel capillary tube
lowered into liquid nitrogen. This traps the CO2 cryogenically to permit
full transfer and conversion of the wood powder from the sample
chamber through the furnace. The helium flow rate is then reduced to
4 ml/min and the cold trap automatically thawed to release the sample
CO2. A single measurement typically takes 8 min.

Samples are measured by isotope ratio mass spectrometry against a
reference gas and cellulose standards. A typical batch analysis com-
prises ten standard analyses located at the start of the run; these provide
varying sample sizes for analysis to test for sample size effects in the
system introduced through variations in wood density which affect the
quantity of wood ablated. Similar to the system described by Schulze
et al. (2004), we find good results obtained from slightly larger samples
using an 80–100-μm-diameter laser beam moving at 10 μm/s across a
300–400-μm-long sampling track (Laser power 85%, 20 Hz). Multiple
passes across the same track advancing the sample in the z-axis yields
an ablation pit c. 230-μm deep and ensures that sufficient material is
available for analysis. At the end of the run and as appropriate, addi-
tional cellulose standards are analysed to assess analytical precision and
measurement stability. Although the IAEA-C3 holocellulose standard
material is not completely homogeneous, measurement precision of
0.11–0.15‰ is routinely obtained.

For inter-annual laser analysis of the tree-ring samples a 50-year
period was identified for each series and analysed once per growth ring
using a laser beam of 100 μm in diameter sampling three times along
the same traverse of 500 μm. For this test, the location of laser sampling
within each ring was not positioned systematically, the only constraint
being that the laser sampled wood (radially) across the ring and
avoided any resin ducts or visible contaminants (e.g. abrasive grains
embedded in the wood following sample preparation) (Fig. 1). Samples
were run in batches of c. 60–80 for convenience although larger batches
of 150–200 samples have been run successfully.

3. Results

Comparison of the four carbon isotope time series (Fig. 2A–D) de-
veloped using conventional methods (manual subdivision, cellulose

Fig. 1. (Right panel) Example of sub-divided resin-ex-
tracted wood lath for annual UV laser ablation carbon iso-
tope analysis. The above lath, from Torneträsk, northern
Sweden (68.10–68.30°N, 19.40–20.20°E 350–450 m a.s.l.)
is approximately c. 20 mm× 2 mm. In this image each
dated growth ring is sampled by UV laser ablation as a
single traverse (100 μm beam diameter 500 μm traverse
length). Each traverse is positioned in a broadly radial di-

rection through the tree-ring avoiding any resin ducts or contamination. Base grid 1 mm× 1 mm. (Left panel) transverse cross-section of lath indicating the position and depth of the
ablation pit (c. 0.23 mm).
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extraction and mass spectrometry) demonstrate a very high degree of
common signal and an expressed population signal (EPS) of 0.95 (0.90)
(Wigley et al., 1984) for raw (atmospheric corrected) δ13C data
(McCarroll and Loader, 2004). Similar results are obtained from the
resin-extracted wholewood analysed using the laser (0.89 (0.76)). The
two series are offset isotopically because of the difference in chemical
composition of wholewood and cellulose in Scots pine. The average
correlation between the individual series measured on cellulose using
the elemental analyser is 0.82 (0.69) and on resin extracted wood
sampled annually over 100 μm is 0.66 (0.44) for the raw (atmospheric
corrected) δ13C data. The correlation between the two mean series is
0.95 (0.90). Variability in the laser-ablation data is slightly less than
that of the cellulose data, which probably reflects the effect of lignin in
the laser analyses, which may temporally “smooth” the environmental
signal as it is produced within the tree-ring over a longer period than
the cellulose which if formed during a shorter time period. The weaker
inter-annual correlation in the laser data versus the conventional mea-
surements very likely reflects the failure of the more finely-resolved and
somewhat less constrained and more variable sampling strategy (a
400 μm traverse) to capture the mean signal of the entire tree-ring in
the same way as the removal and analysis of cellulose from the entire
tree-ring.

4. Conclusion and future scope

This paper describes and demonstrates the performance of a laser
ablation system for stable carbon isotope analysis in tree-ring research.
The system offers potential for developing long tree-ring isotope series,

particularly from trees with very narrow rings, as well as the more
common application of the method to produce high-resolution intra-
annual profiles. The automated cryogenic trap in our modified Schulze-
type system widens capability for small volume sampling and also for
pooling material from multiple laths. However, factors such as cost of
the equipment and practical limitations mean that this technology is
unlikely to replace established approaches for measuring (Carbon,
Hydrogen, Oxygen) isotopes in tree-rings, at least in the near future.

Apart from resin extraction (for conifers), a standard process in most
dendro-laboratories, no special preparation is required for laser sam-
pling other than the preparation of a flat clean surface. The system
described runs routinely with a 50 mm diameter sample chamber. The
future application of this approach to core samples is therefore con-
strained by ability to sub-divide core samples and sample chamber di-
mensions. Recent development of a 200 × 200 mm “large-format”
sample cell offers exciting potential to work with larger samples to
develop wood (rather than cellulose) isotope chronologies more ra-
pidly, or to pre-screen individual trees prior to their selection for fur-
ther isotopic analyses or cellulose extraction. Even with such a “large-
format” configuration, the sample chamber is currently not able to
accommodate large wooden artefacts (e.g. violins). To analyse such
objects a small sub-sample of wood would first need to be removed for
laser-ablation which may not be desirable in many cases. An additional
consideration when sampling is that although essentially non-destruc-
tive, UV laser ablation still leaves a small “scar” which could affect the
aesthetic and/or value of the artefact.

Annually-resolved laser sampling results compare very favourably
with conventional manually-sampled methods and demonstrate

Fig. 2. Comparison between the stable carbon isotope series developed from four northern Swedish Pinus sylvestris L. trees analysed using laser ablation and conventional “on-line”
methods. A: Comparison of raw laser (filled circles) and conventional data sampled using an elemental analyser (EA) (open circles). B: Bi-plot of raw laser and conventionally-sampled
data. C & D: As for A and B but for atmospheric δ13C (Suess) corrected data (after McCarroll and Loader, 2004).
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potential of this approach for pre-screening cores to establish re-
presentativeness prior to selection for cellulose extraction or intra-an-
nual analyses.

Acknowledgements

We thank the EU (Millennium 017008), the Leverhulme Trust (RPG-
2014-327) and UK NERC (NE/B/501504, NE/P011527/1) for research
support; Rob Hutchinson and Damon Green (New Wave/ESI), Natasha
Kljun, Alex Soudant, and our many colleagues in Millennium and
Swansea University for their patience and support throughout the de-
velopment process. NJL thanks Brian Schubert for his supportive ob-
servation.

References

Anchukaitis, K.J., Evans, M.N., Wheelwright, N.T., Schrag, D.P., 2008. Stable isotope
chronology and climate signal calibration in neotropical montane cloud forest trees.
J. Geophys. Res. 113, G03030. http://dx.doi.org/10.1029/2007JG000613.

Boettger, T., Haupt, M., Knoller, K., Weise, S.M., Waterhouse, J.S., Rinne, K.T., Loader,
N.J., Sonninen, E., Jungner, H., Masson-Delmotte, V., Stievenard, M., Guillemin,
M.T., Pierre, M., Pazdur, A., Leuenberger, M., Filot, M., Saurer, M., Reynolds, C.E.,
Helle, G., Schleser, G.H., 2007. Wood cellulose preparation methods and mass
spectrometric analyses of delta C-13, delta O-18, and nonexchangeable delta H-2
values in cellulose, sugar, and starch: an interlaboratory comparison. Anal. Chem. 79,
4603–4612. http://dx.doi.org/10.1021/ac0700023.

Dodd, J.P., Patterson, W.P., Holmden, C., Brasseur, J.M., 2008. Robotic micromilling of
tree-rings: a new tool for obtaining subseasonal environmental isotope records.
Chem. Geol. 252, 21–30.

Evans, M.N., Schrag, D.P., 2004. A stable isotope based approach to tropical den-
droclimatology. Geochim. Cosmochim. Acta 68, 3295–3305. http://dx.doi.org/10.
1016/j.gca.2004.01.0061353.

Grudd, H., 2008. Torneträsk tree-ring width and density AD500–2004: a test of climatic
sensitivity and a new 1500-year reconstruction of north Fennoscandian summers.
Clim. Dyn. 31, 843–857.

Helle, G., Schleser, G.H., 2004. Beyond CO2-fixation by rubisco—an interpretation of
13C/12C variations in tree-rings from novel intra-seasonal studies on broad-leaf trees.
Plant Cell Environ. 27, 367–380.

Hoffmann, E., Lüdke, C., Scholze, H., Stephanowitz, H., 1994. Investigation of element
variability in tree-rings of young Norway spruce by laser-ablation-ICPMS. Fresenius J.
Anal. Chem. 350, 253–259.

Kagawa, A., Naito, D., Sugimoto, A., Maximov, T.C., 2002. Effects of spatial and temporal
variability in soil moisture on widths and δ13C values of eastern Siberian tree-rings. J.
Geophys. Res. 108, 4500. http://dx.doi.org/10.1029/2002JD003019.

Laumer, W., Andreu, L., Helle, G., Schleser, G.H., Wieloch, T., Wissel, H., 2009. A novel
approach for the homogenization of cellulose to use micro-amounts for stable isotope
analyses. Rapid Commun. Mass Spectrom. 23, 1934–1940.

Loader, N.J., Robertson, I., Barker, A.C., Switsur, V.R., Waterhouse, J.S., 1997. A mod-
ified method for the batch processing of small whole wood samples to α-cellulose.
Chem. Geol. 136, 313–317.

Loader, N.J., Santillo, P.M., Woodman-Ralph, J.P., Rolfe, J.E., Hall, M.A., Gagen, M.,
Robertson, I., Wilson, R., Froyd, C.A., McCarroll, D., 2008. Multiple stable isotopes
from oak trees in southwestern Scotland and the potential for stable isotope den-
droclimatology in maritime climatic regions. Chem. Geol. 252, 62–71. http://dx.doi.
org/10.1016/j.chemgeo.2008.01.006.

Loader, N.J., Switsur, V.R., Field, E.M., 1995. High-resolution stable isotope analysis of
tree-rings: implications of ‘microdendroclimatology’ for palaeoenvironmental re-
search. The Holocene 5, 457–460.

Loader, N.J., Young, G.H.F., Grudd, H., McCarroll, D., 2013. Stable carbon isotopes from
Torneträsk, northern Sweden provide a millennial length reconstruction of summer
sunshine and its relationship to Arctic circulation. Quat. Sci. Rev. 62, 97–113. http://
dx.doi.org/10.1016/j.quascirev.2012.11.014.

McCarroll, D., Loader, N.J., 2004. Stable isotopes in tree-rings. Quat. Sci. Rev. 23,
765–778.

Ogée, J., Barbour, M.M., Wingate, L., Bert, D., Bosci, A., Stievenard, M., Lambroti, C.,
Pierre, M., Bariac, T., Loustau, D., Dewar, R.C., 2009. A single-substrate model to
interpret intra-annual stable isotope signals in tree-ring cellulose. Plant Cell Environ.
32, 1071–1090. http://dx.doi.org/10.1111/j.1365-3040.2009.01989.x.

Ogle, N., McCormac, F.G., 1994. High-resolution δ13C measurements of oak show a
previously unobserved spring depletion. Geophys. Res. Lett. 21, 2373–2375.

Poussart, P., Evans, M., Schrag, D., 2004. Resolving seasonality in tropical trees: multi-
decade, high-resolution oxygen and carbon isotope records from Indonesia and
Thailand. Earth Planet. Sci. Lett. 218, 301–316. http://dx.doi.org/10.1016/S0012-
821X(03)00638-1.

Poussart, P., Schrag, D., 2005. Seasonally resolved stable isotope chronologies from
northern Thailand deciduous trees. Earth Planet. Sci. Lett. 235, 752–765. http://dx.
doi.org/10.1016/j.epsl.2005.05.012.

Poussart, P.M., Myeni, S.C.B., Lanzirotti, A., 2006. Tropical dendrochemistry: a novel
approach to estimate age and growth from ringless trees. Geophys. Res. Lett. 33,
L17711. http://dx.doi.org/10.1029/2006GL026929.

Prohaska, T., Stadlbauer, C., Wimmer, R., Stingeder, G., Latkoczy, C., Hoffmann, E.,
Stephanowitz, H., 1998. Analytical investigations of tree-rings by laser ablation ICP-
MS. Sci. Total Environ. 219, 29–39. http://dx.doi.org/10.1016/S0048-9697(98)
00224-1.

Rinne, K.T., Boettger, T., Loader, N.J., Robertson, I., Switsur, V.R., Waterhouse, J.S.,
2005. On the purification of alpha-cellulose from resinous wood for stable isotope (H,
C and O) analysis. Chem. Geol. 222, 75–82. http://dx.doi.org/10.1016/j.chemgeo.
2005.06.010.

Rinne, K.T., Saurer, M., Kirdyanov, A.V., Loader, N.J., Bryukhanova, M.V., Werner, R.A.,
Siegwolf, R.T.W., 2015. The relationship between needle sugar carbon isotope ratios
and tree-rings of larch in Siberia. Tree Physiol. 35, 1192–1205. http://dx.doi.org/10.
1093/treephys/tpv096.

Schollaen, K., Heinrich, I., Helle, G., 2014. UV-laser-based microscopic dissection of tree-
rings – a novel sampling tool for δ13C and δ18O studies. New Phytol. 201, 1045–1055.
http://dx.doi.org/10.1111/nph.12587.

Schubert, B.A., Jahren, A.H., 2011. Quantifying seasonal precipitation using high-re-
solution carbon isotope analyses in evergreen wood. Geochim. Cosmochim. Acta 75,
7203–7291. http://dx.doi.org/10.1016/j.jca.2011.08.002.

Schulze, B., Wirth, C., Linke, P., Brand, W.A., Kuhlmann, I., Horna, V., Schulze, E.-D.,
2004. Laser-ablation-combustion-GC-IRMS—a new method for online analysis of
intra-annual variation of δ13C in tree-rings. Tree Physiol. 24, 1193–1201.

Schweingruber, F.H., 1988. Tree-Rings – Basics and Applications of Dendrochronology.
ISBN 0-7923-0559-0. Kluwer Academic Press, Dordrecht, The Netherlands.

Skomarkova, M.K., Vaganov, E.A., Mund, M., Knohl, A., Linke, P., Boerner, A., Schulze,
E.-D., 2006. Inter-annual and seasonal variability of radial growth, wood density and
carbon isotope ratios in tree-rings of beech (Fagus sylvatica) growing in Germany and
Italy. Trees 20, 571–586. http://dx.doi.org/10.1007/s00468-006-0072-4.

Soudant, A., Loader, N.J., Bäck, J., Levula, J., Kljun, N., 2016. Intra-annual variability of
wood formation and δ13C in tree-rings at Hyytiälä, Finland. Agric. For. Meteorol. 224,
17–29. http://dx.doi.org/10.1016/j.agrformet.2016.04.015.

Vaganov, A.E., Schulze, E.-D., Skomarkova, M.V., Knohl, A., Brand, W.A., Roscher, C.,
2009. Intra-annual variability of anatomical structure and δ13C values within tree-
rings of spruce and pine in alpine, temperate and boreal Europe. Oecologia 161,
729–745. http://dx.doi.org/10.1007/s00442-009-1421-y.

Waterhouse, J.S., Cheng, S.Y., Juchelka, D., Loader, N.J., McCarroll, D., Switsur, V.R.,
Gautam, L., 2013. Position-specific measurement of oxygen isotope ratios in cellu-
lose: isotopic exchange during heterotrophic cellulose synthesis. Geochim.
Cosmochim. Acta 112, 178–191. http://dx.doi.org/10.1016/j.gca.2013.02.021.

Wieser, M.E., Brand, W.A., 1999. A laser extraction combustion technique for in situ delta
C-13 analysis of organic and inorganic materials. Rapid Commun. Mass Spectrom. 13,
1218–1225.

Wigley, T.M.L., Briffa, K.R., Jones, P.D., 1984. On the average value of correlated time
series with applications in dendroclimatology and hydrometeorology. J. Clim. Appl.
Meteorol. 23, 201–213.

Wilson, A.T., Grinsted, W.A., 1977. 12C/13C in cellulose and lignin as paleothermometers.
Nature 265, 133–135.

Xu, C., Zheng, H., Nakatsuka, T., Sano, M., Li, Z., Ge, J., 2015. Inter- and intra-annual
tree-ring cellulose oxygen isotope variability in response to precipitation in Southeast
China. Trees. http://dx.doi.org/10.1007/s00468-0151320-2.

N.J. Loader et al. Chemical Geology 466 (2017) 323–326

326


